Reproducible Models and Replicable Implementations Current Trends in Computational Neuroscience Hans Ekkehard Plesser, UMB Sharon Crook, ASU Andrew Davison, CNRS

> Presented at <u>SIAM Computational Science & Engineering</u> Reno, NV, 4 March 2011

Reproducible Models and Replicable Implementations: Current Trends in Computational Neuroscience by Hans E Plesser, UMB/IMT is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License</u>. Permissions beyond the scope of this license may be available at <u>http://</u> <u>arken.umb.no/~plesser</u>.

Computational Neuroscience

What is Computational Neuroscience?

The goal of neural modeling is to relate, in nervous systems, function to structure on the basis of operation. MacGregor & Lewis, 1977

Keeping it simple: point neurons

Then explore network dynamics!

Random network

Structured network

Hill & Tononi (2005)

Simulations are exciting — but reliable?

- Computational neuroscience
 - no conservation laws
 - no clear-cut separation of scales
 - no general agreement on which aspects of network activity are essential (spike rate vs spike time debate)
 - highly abstract models difficult to compare to experimental data quantitatively
- Highly dependent on *reliable* simulations
- Let's look at a real-life case

Case 2: The clipped Gaussian

- Well-known paper on plasticity
- Parameters chosen from Gaussian distribution, according to paper
- Results could not be reproduced independently
- Analysis of original C-code provided by authors:
 Parameters were chosen from *clipped* Gaussian

Hans Ekkehard Plesser

The (sad) state of the art

- Few published results can be reproduced independently
- Authors often struggle to replicate their own results
- Systematic comparison and evaluation of models are rare
- Authors rarely discuss why and how models ended up as they are
- Models are seldom re-used

Reproduction vs Replication

Chris Drummond Replicability is not Reproducibility: Nor is it Good Science ICML Montreal 2009

Replication: necessary, difficult, & insufficient

- Replication
 - Re-create identical results
 - Essentially book-keeping
 - Requires tools & discipline
 - No new insights: tests implementation, not ideas
- Internal replication

Joe recreates results on original machine

• External replication

Jane recreates Joe's results on her machine using Joe's code

• Cross replication

Alice recreates Joe's results using a different simulator, based on a simulator-independent model description

How much detail does replication require?

- Very simple point-neuron model 10^{-12} $\dot{V} = -rac{V}{ au} + rac{I_E}{C}$ 10^{-13} Error [m] • Exact updating rule ($a = I_E \tau/C$) $V_{k+1} = V_k e^{-h/\tau} + a(1 - e^{-h/\tau})$ 10^{-15} 10^{-16} 10⁰ 1∩² 10^{1} • Two different implementations 10^{4} Number of steps V[k+1] = V[k] * exp(-h/tau) - a * expm1(-h/tau)V[k+1] = V[k] - (a - V[k]) * expm1(-h/tau)
- Different numerical properties
 Replication requires that we specify implementation!

But do such tiny differences matter?

Norwegian University of Life Sciences

Reproduction

- Independent
- Test hypotheses and models
- Validates concepts
- Requires reflection

From oil drops to first-passage times

Millikan's oil drop experiment

Erwin Schrödinger *Zur Theorie der Fall- und Steigversuche an Teilchen mit Brownscher Bewegung* Physikalische Zeitschrift **16**:289 (1915)

Hans Ekkehard Plesser

Reproduction needs replication

- Reproducible models describe scientific ideas
- Independent reproduction will generally fail to replicate original results precisely
- Requires learned judgement of discrepancies
- Requires means to understand failure
- Replicable implementation

Improving Scientific Practice in Computational Neuroscience

Good model description practice

- Systematic approach to model description in papers
- Standardize tables/checklists
- Standards for graphic representation of models
- Nordlie, Gewaltig, & Plesser
 PLoS Comp Biol 5:e1000456 (2009)

Α	Model Summary
Populations	Three: excitatory, inhibitory, external input
Topology	-
Connectivity	Random convergent connections
Neuron model	Leaky integrate-and-fire, fixed voltage threshold, fixed absolute refractory time (voltage clamp)
Channel models	-
Synapse model	α-shaped current inputs
Plasticity	-
Input	Independent fixed-rate Poisson spike trains to all neurons (during initial stimulation period)
Measurements	Spike activity

В		Populations
Name	Elements	Size
E	laf neuron	$N_{E} = 4N_{I}$
I	laf neuron	NI
E _{ext}	Poisson generator	$C_E(N_{E}+N_{I})$

С			Connectivity
Name	Source	Target	Pattern
EE	E	E	Random convergent $C_{E} \rightarrow 1$, weight <i>J</i> , delay <i>D</i>
IE	E	I	Random convergent $C_{E} \to 1$, weight <i>J</i> , delay <i>D</i>
EI	I	E	Random convergent $C_{I} \rightarrow 1$, weight $-gJ$, delay D
II	I	I	Random convergent $C_{I} \rightarrow 1$, weight $-gJ$, delay D
Ext	E _{ext}	E∪I	Non-overlapping $C_{E} \to 1$, weight <i>J</i> , delay <i>D</i>

D	Neuron and Synapse Model								
Name	laf neuron								
Туре	Leaky integrate-and-fire, α -current input								
Subthreshold dynamics	$\begin{split} \tau \dot{V}(t) &= -V(t) + RI(t) \text{if} \qquad t > t^* + \tau_{\text{rp}} \\ V(t) &= V_{\text{r}} \qquad \text{else} \\ I(t) &= \ \frac{\tau}{R} \sum_{\tilde{t}} w \alpha (t - (\tilde{t} + \Delta)) \Theta (t - (\tilde{t} + \Delta)) \end{split}$								
Spiking	If $V(t-) < \theta \land V(t+) \ge \theta$ 1. set $t^* = t$ 2. emit spike with time-stamp t^*								
E	E Input								

E	input
Туре	Description
Poisson generators	Fixed rate $\nu_{\text{ext}},$ C_{E} generators per neuron, each generator projects to one neuron; active only during initial stimulation period

Spike activity as raster plots for subset of excitatory neurons

Professional, shared software

- Widely used packages replace homemade *ad hoc* code
- Currently: Neuron, NEST, Genesis, Moose, Brian, PCSim
- "Social" developments
 - Simulator review (Brette et al, 2007)
 - Teaching software at summer schools
 - Large-scale *scientific* projects (eg EU FACETS)
 - Neuroinformatics journals
 - Raising awareness among reviewers and editors
- "Technical" developments
 - Version control
 - Test suites

Software technology used in NEST development

ModelDB: Sharing models

- Curated database of computational neuroscience models
- Only published models
- Open to any software
- Nearly 700 models
- <u>http://</u> senselab.med.yale.edu/ modeldb/

Sparsely connected networks of spiking neurons (Brunel 2000)

Accession: 42020

The dynamics of networks of sparsely connected excitatory and inhibitory integrate-and-fire neurons are studied analytically (and with simulations). The analysis reveals a rich repertoire of states, including synchronous states in which neurons fire regularly; asynchronous states with stationary global activity and very irregular individual cell activity; and states in which the global activity oscillates but individual cells fire irregularly, typically at rates lower than the global oscillation frequency. See paper for more and details.

Reference: Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. <u>J Comput Neurosci</u> 8:183-208 [PubMed]

Citations Citation Browser

Model Information (Click of	on a link to find other models with that property)
Model Type:	Connectionist Network;
Brain Region(s)/Organism:	
Cell Type(s):	
Channel(s):	
Gap Junctions:	
Receptor(s):	
Gene(s):	
Transmitter(s):	
Simulation Environment:	NEST (formerly BLISS/SYNOD);
Model Concept(s):	Activity Patterns; Oscillations; Spatio-temporal Activity Patterns; Simplified Models;
Implementer(s):	Gewaltig, Marc-Oliver ;

brunel	Readme.txt for an implementation of the model associated with the paper:							
D <u>readme.txt</u> D <u>brunel.sli</u>	Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8:183-208							
	The brunel.sli file was supplied by Marc-Oliver Gewaltig and runs under NEST. Please contact Marc-Oliver Gewaltig marc-oliver.gewaltig@honda-ri.de for more information.							

PyNN: A Meta-Simulator

- Python-based wrapper for many simulators
- Write model and simulation code once, run on all
- Facilitates model sharing and cross-validation
- Developed by Andrew Davison for FACETS project
- <u>http://neuralensemble.org/PyNN</u>

NeuroML: A model specification language

- XML-based language for model specification
- Multiple layers: channels, neuron morphologies, networks
- Code-generation for several simulators, including PyNN
- Facilitates model sharing and re-use
- <u>http://www.neuroml.org</u>

Provenance tracking: Sumatra

- Python package to enable systematic capture of the environment of numerical simulations/analyses
- Tracks simulation code, dependencies, platform information, results
- Developed by Andrew Davison as part of FACETS project
- http://neuralensemble.org/sumatra

000	Sumatra: TestProject: List of records												
▲ ► ▲ + ♦ http://127.0.0.1:8002/													
TestProject: List of records													
Delete	Label	Label Reason Outcome Duration Processes Simulator		Script	Script			Time	Tags				
include data 🚍						Name	Version	Repository	Main file	Version			
	<u>20100709-</u> <u>154255</u>		'Eureka! Nobel prize here we come.'	0.59 s		Python	2.5.2	/Users/andrew/tmp/SumatraTest	main.py	396c2020ca50	09/07/2010	15:42:55	
Θ	<u>20100709-</u> <u>154309</u>			0.59 s		Python	2.5.2	/Users/andrew/tmp/SumatraTest	main.py	396c2020ca50	09/07/2010	15:43:09	
	haggling	'determine whether the gourd is worth 3 or 4 shekels'	'apparently, it is worth NaN shekels.'	0.59 s		Python	2.5.2	/Users/andrew/tmp/SumatraTest	main.py	396c2020ca50	09/07/2010	15:43:20	<u>foobar</u>

Hans Ekkehard Plesser

NineML: A model description standard

- Aims for community standard for declarative model descriptions
- Inspired by SBML and CellML
- Focus on networks of point neurons
- Under development by INCF Multi-scale Modeling Task Force

Perspectives

- Community increasingly aware of need for reproducibility and replicability
- Large-scale projects have led to development of valuable tools
- Summer schools educate PhD-students and post-docs in use of established modeling tools
- Neuroinformatics journals allow publication of domainspecific solutions
- International Neuroinformatics Coordinating Facility (<u>INCF</u>) stimulates debate and development
- <u>NEST Initiative</u> is devoted to furthering reliable simulations
- ➡ We have a long way to go, but we are (finally) moving!

Collaborators

Sharon Crook

School of Mathematical and Statistical Sciences, School of Life Sciences, Center for Adaptive Neural Systems Arizona State University

Andrew Davison

Unité de neuroscience, information et complexité CNRS Gif-sur-Yvette

nest:: initiative

Eilen Nordlie

Marc-Oliver Gewaltig

Honda Research Institute Europe Offenbach

Research Council of Norway (eVita program)

