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Abstract

Kim et al (Appl Math & Comput 199 (2008) 195) recently presented a test of random number
generators based on the gambler’s ruin problem and concluded that several generators, including
the widely used Mersenne Twister, have hidden defects. We show here that the test by Kim et al
suffers from a subtle, but consequential error: Re-seeding the pseudorandom number generator
with a fixed seed for each starting point of the gambler’s ruin process induces a random walk
of the test statistic as a function of the starting point. The data presented by Kim et al are thus
individual realizations of a random walk and not suited to judge the quality of pseudorandom
number generators. When generating or analyzing the Gambler’s ruin data properly, we do not
find any evidence for weaknesses of the Mersenne Twister and other widely used random number
generators.
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1. Introduction

Pseudorandom number generators (PRNGs) are indispensable tools in computational science.
They are well covered by an increasing body of scientific literature, e.g. [1, 2]. Systematic tests
of pseudorandom number generators have received much attention. The TestU01 testsuite by
L’Ecuyer and Simard [3] appears to define the current state of the art in the field. The history of
pseudorandom number generation is rife with seemingly robust random number generators which
failed spectacularly under particular circumstances, e.g., [4]. Donald Knuth has summarized this
beautifully: “Every random number generator will fail in at least one application” [1, p. 189].
New reports on deficiencies of random number generators therefore deserve careful attention.

The recent report by Kim et al [5] demonstrating “hidden defects” in the widely used Mersenne
Twister generators [6] and some multiple recursive generators gave thus reason for concern. The
analysis by Kim et al is based on the gambler’s ruin problem: At the beginning of a game, the
player owns x0 = s and the bank N − s coins. For each step j in the game, the player either wins
a coin from the bank with probability p, so that x j = x j−1 + 1, or loses a coin to the bank with
probability 1 − p, i.e., x j = x j−1 − 1. The game ends after T steps when the player has no money
left (ruin, xT = 0), or the player has won everything (broke the bank, xT = N). This game has
fascinated statisticians for centuries and is well covered in textbooks, e.g. [7, Ch. XIV].
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After playing K games for a given starting point s, we can compute the average duration

T̄ (s) =
1
K

K�

j=1

T j(s) , (1)

where T j(s) is the duration of the jth trial for starting point s. For K � 1, T̄ (s) should be a
random number following a normal distribution by virtue of the central limit theorem [7, Ch. X].
Explicit expressions for the mean µ(s) and the standard deviation σ(s) of the trial duration have
been obtained by Kim et al [5, p. 200]; see also [7, Ch. XIV]. For brevity, we give here only the
equations for test case A3 from Kim et al, with a winning probability of p =

√
2 − 1 ≈ 0.414:
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One may then compute the Z-statistic

Z(s) =
T̄ (s) − µ(s)

σ(s)
�√

K
, (4)

If T̄ (s) is normally distributed, then the Z-statistic is normally distributed with zero mean and
unit variance, whence |Z| > 2.58 should be observed for approximately 1% of all values of T̄ (s)
collected. We will denote the zero-mean, unit-variance distribution as N(0, 1).

Interestingly, Kim et al re-seed the PRNG with a fixed seedS before beginning the series of K
games for each starting point s. They concede that as a consequence “the Z-values corresponding
to different starting points are highly correlated” and that one therefore “cannot say whether a
PRNG fails or passes by counting the number of starting points for which the PRNG fails” the
Z-test. But they then argue that “we can regard a Z-value to each starting point as a separate test
result” and conclude that “[i]f a PRNG fails for too many starting points, then we cannot say that
the PRNG has good randomness”.

We show here that one cannot regard Z-values obtained for different starting points as “sep-
arate test result[s]”. Quite to the contrary: Due to the re-seeding of the PRNG for each starting
point s, the Z-values obtained for subsequent starting points s = 1, 2, 3 . . . form a random walk
with properties that are independent of the details of the experiment. If one re-analyzes the re-
sults by Kim et al properly in terms of this random walk, no evidence for “hidden defects” in the
Mersenne Twister remains. The same holds true for properly conducted experiments in which
the random number generator is seeded only once before the very first game.

We will briefly describe our numerical experiments in the following section, followed by
results and analysis in Section 3, before concluding in Section 4.

2. Numerical experiments

We performed numerical experiments for test cases A2 (p = 1/4), A3 (p =
√

2 − 1), and A4
(p = 1/e) as defined by Kim et al. Each test case was simulated under two different regimes:
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Re-seeding regime Under the re-seeding regime, we seeded the PRNG with a fixed seed S for
each starting point s and then performed K subsequent games beginning at that starting
point. This is the regime used by Kim et al [5].

Continuous regime Under the continuous regime, we seeded the PRNG once with a given seed
S. We then performed K games for starting point s = 1, then K games for starting point
s = 2, etc.

All experiments were performed for a total number of N = 1000 coins, starting points s =
1, 2, . . . ,N − 1 = 1, 2, . . . , 999, with K = 2000 games per starting point. For each starting point,
the average trial duration T̄ (s) and its standard deviation

�
∆T 2 is reported. We will use the term

experiment to refer specifically to the set of K games played for each of the N − 1 starting points
for a given seed S. Thus an experiment consists of a total of (N − 1)K games and reports N − 1
values T̄ (s). We performed ten experiments with seeds S = {1, 2, . . . , 10}×106 under each of the
two regimes.

All experiments were performed with self-written C++-code using the implementation of
the Mersenne Twister pseudorandom number generator MT19937ar provided by Makoto Mat-
sumoto1. Random numbers were drawn using the genrand_real2() function, which generates
32-bit random numbers uniformly distributed in [0, 1). Function init_genrand() was used
with a 32-bit seed to initialize the random number generator. Data was analyzed using Mathe-
matica 7 (Wolfram Research, Inc).

All data reported here was generated on a MacBook Pro computer (Apple, Inc). Preliminary
experiments were performed on the Stallo HPC Cluster operated by University of Tromsø as part
of the NOTUR framework.

3. Results

We first consider the continuous regime, where all pseudorandom numbers are drawn from
a single sequence without re-seeding the generator. A PRNG would typically be used in this
manner in a simulation. Figure 1 shows the Z-scores for five experiments (five different initial
seeds S) for test case A3 (p =

√
2 − 1). The scores clearly scatter in a manner consistent with a

normal distribution, with few scores outside the 99% confidence interval. This is corroborated by
the normal probability plot in Fig. 2, which shows Z-scores for all thirty experiments performed
(10 for each of the test cases A2, A3, A4). The expected cumulative distribution function for
the N(0, 1) normal distribution is superimposed on the experimental data, indicating that the
experimental data closely follows the N(0, 1)-distribution.

We further confirmed this by testing the data against the N(0, 1)-distribution using the Kolmo-
gorov-Smirnov test [1, Ch. 3.3.1]. The null hypothesis that the Z-scores are distributed according
to N(0, 1) is rejected for two out of thirty experiments at the 5% confidence level. At this level,
one would expect 5% of 30 experiments, i.e., 1.5 experiments, to fail the test. We therefore
conclude that there is no evidence to reject the null hypothesis that the Z-scores for the game
durations of the gambler’s ruin problem are N(0, 1)-distributed when using the Mersenne Twister
mt19937ar PRNG in the continuous regime.

We applied this Gambler’s ruin test to several other widely used PRNGs:

1Available at http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html, last ac-
cessed 2009-07-02.
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Figure 1: Z-statistic for experiments under the continuous regime for starting points s = 1, . . . , 950: Z-values for five
experiments for case A3 (p =

√
2 − 1); data points for each experiment are shown in a different shade of gray.
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Figure 2: Normal probability plot of Z-scores for all ten experiments for each of the cases A2, A3, A4 under the
continuous regime, starting points s = 1, . . . , 950. Each experiment is shown in a different shade of gray, starting with
black for the first experiment for case A2, and ending with the lightest gray for the tenth experiment for case A4. The
thin black diagonal is the cumulative distribution function for the N(0, 1) normal distribution.
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Figure 3: Z-values for five experiments for case A3 under the re-seeding regime. Data are presented in the same way as
in Fig. 1.

• mrg32k3a [8], using the implementation in the TestU01 library [3], v. 1.2.3;

• ran2 and ran3 [9], using the implementation in the GNU Scientific Library [10], v. 1.14;

• Knuth’s lagged Fibonacci generator [1, 9th printing, 2002], using the implementation in
the GNU Scientific Library [10], v. 1.14.

All generators passed the test.

3.1. Gambler’s ruin with re-seeding
Z-scores obtained in the re-seeding regime are strikingly different as shown in Figure 3. Here,

scores from each of the five experiments form seemingly continuous paths. These paths are very
similar in appearance to many of the paths shown by Kim et al, e.g., Fig. 6 in ref. [5]. It is
rather obvious that these Z-scores are highly correlated and do not follow a normal distribution.
This is confirmed by the normal probability plot in Fig. 4, which again shows data for all thirty
experiments. Not a single experiment comes even close to the N(0, 1)-distribution.

The Z-scores for individual experiments in the re-seeding regime, as shown in Fig. 3, strongly
resemble random walks in Z as a function of s, with a seemingly shrinking size of the random
steps with increasing s. We shall now demonstrate that this interpretation is correct.

3.2. A random walk in Z
Our analysis is based on the fact that for 0 < p < 1

2 , almost all games end in ruin; our
argument applies equally for 1

2 < p < 1 if one exchanges ruin with breaking the bank. From
the probability of ruin for a given starting point given by Feller [7, Eq. XIV.2.4], we can find the
starting point S β for which the probability of ruin is 1 − β:

S β =
ln
�
1 + β

��
1
p − 1

�N
− 1
��

ln
�

1
p − 1

� . (5)
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Figure 4: Normal probability plot of Z-values for all experiments and cases in the re-seeding regime. See Fig. 2 for
details of presentation.

Test case p S 10−6 a b q
A2 1/4 987 2 6 3
A4 1/e 974 e/(e − 2) 4e(e − 1)/(e − 2)3 e − 1
A3

√
2 − 1 960 3 + 2

√
2 68

√
2 + 96

√
2

Table 1: Properties of test cases. p: Probability of winning a single coin toss; S 10−6 : Probability of eventual ruin is
greater than 1− 10−6 for starting points s < S 10−6 , out of a total of 999 starting points; a, b, q: parameters in Eqs. 10–11.
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For any s ≤ S β, the probability of ruin is greater than 1 − β. For the three test cases considered
here, the probability of ruin is greater than β = 1 − 10−6 for starting points s ≤ 950 (cf. Table 1
in the appendix). We will therefore restrict ourselves to starting points between 1 and 950 and
assume that all games end in ruin.

Based on this assumption we show in A that the expectation for the Z-score for starting point
s + 1, given the measured Z-score zs for starting point s, is given by

�Z(s + 1)|s, zs� =
zs�
1 + 1

s

±
1

√
1 + s

. (6)

The ± term gives the standard deviation.
Thus, the re-seeding regime used by Kim et al [5] induces a random walk in the Z-statistic

as a function of the starting point s. The random walk is characterized by a drift describing the
damping of any excursions away from Z = 0 (first term in Eq. 6) and Gaussian fluctuations with
an amplitude decreasing with s (second term in Eq. 6).

According to Eq. 6, the difference

ds = zs+1 − zs for s = 1, . . . , 949 . (7)

of Z-scores for neighboring starting points follows approximately a normal distribution with
expectation

�Ds|zs� =
zs

√
1 + 1/s

− zs . (8)

The Z-statistic for the ds

ζs =
ds − �Ds|zs�

1/
√

1 + s
=
√

1 + s
�
zs+1 −

zs
√

1 + 1/s

�
(9)

should then have approximately a N(0, 1) distribution.
This is supported by data in Figures 5 and 6. Figure 5 shows individual ζ-scores for the

same five experiments as in Fig. 3. The distribution of the scores is in apparent agreement with
a normal distribution. There are also no perceptible correlations in the data. Figure 6 shows the
normal probability plot of the ζ-scores for all thirty experiments, i.e., the same data as shown
in Fig. 4, but now properly analyzed. The figure indicates excellent agreement with the N(0, 1)
normal distribution. All thirty trials pass the Kolmogorov-Smirnov test against N(0, 1) as null
hypothesis at the 5% significance level, which is again compatible with 1.5 expected failures.
Thus, also the data from the re-seeding regime provide no evidence against a proper distribution
of the underlying pseudorandom numbers.

4. Discussion

Kim et al [5] tested a range of pseudorandom number generators using three different variants
of the gambler’s ruin problem. They obtained Z-scores for the average duration of the game
across different starting points, and judged the quality of pseudorandom number generators based
on the number of starting points yielding Z-scores outside the 99% confidence interval. Based
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Figure 5: ζ-values for step size in random walk obtained from Eq. 9 for five experiments for case A3. ζ-values are
computed from the same experimental data as the data in Fig. 3. Data are presented in the same way as in Fig. 1.
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Figure 6: Normal probability plot of ζ-values for all experiments and cases. ζ-values are computed from the same
experimental data as the data in Fig. 4. See Fig. 2 for details of presentation.
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on their analysis, they state in particular that one “should be careful in simulating random walks
using . . . MT19937ar” and that “[t]he recently improved initialization . . . of MT19937 brings bad
results”.

We have shown here that these results are an artifact induced by re-seeding the pseudoran-
dom number generator for each starting point. Data obtained without re-seeding do not provide
any evidence against the reliability of the mt19937ar generator, cf. Sec. 3 and Figs. 1 and 2.
Indeed, the re-seeding induces a random walk of the Z-scores as a function of the starting point
of the gambler’s ruin game, as shown in Sec. 3.2. When we re-analyzed the data obtained with
re-seeding in terms of this random walk, we again found no evidence for weaknesses in the
mt19937ar generator. We further demonstrated that the data presented by Kim et al are individ-
ual realizations of a random walk of the Z-score as function of the starting point. It is obviously
not useful to judge the quality of pseudorandom number generators based on individual realiza-
tions of random walk experiments.

The fact that Kim et al considered only individual realizations of a random walk may explain
why they found that the mt19937ar generator with improved seeding scheme performed worse
than the original mt19937 [5, Tab. 5]: They generated a single realization for each of the two
PRNGs (or, if one takes all of their test cases into account, a very small number) and most
likely obtained—entirely by chance—random walks with large excursions for the mt19937ar
generator.

In this paper, we have only considered test cases A2, A3, and A4 from the paper by Kim et
al. Our analysis does not apply to test cases with equal probability of winning and losing (A1,
A5, B1, B2), as the probability of ruin and breaking the bank is identical in these cases. But then
Kim et al did not present evidence for weaknesses of random number generators in these cases,
with the exception of some generators in test case A5. The latter failures can be ascribed to the
fact that A5 tests individual bits, not entire random numbers; Kim et al report no defects of the
Mersenne Twister for case A5. Our random walk analysis applies to test cases C1–C5 even if the
probability of winning and losing is equal, because step sizes differ, so that games from a giving
starting point either all end in ruin or all in breaking the bank.

As our random walk analysis made no assumption about the underlying pseudorandom num-
ber generator except that it is “proper”, i.e., generating uncorrelated pseudorandom numbers
equidistributed on the unit interval, our results apply also to the other pseudorandom number
generators studied by Kim et al, in so far as they invalidate the evidence presented against these
generators. Indeed, when we applied the Gambler’s ruin test without re-seeding to several widely
used pseudorandom number generators, we found no evidence for weaknesses in those genera-
tors (mrg32k3a, ran2, ran3, Knuth’s lagged Fibonacci generator).

Concerning the mt19937arMersenne Twister, we have demonstrated that the criticism voiced
against it by Kim et al [5] is invalid. This does not make the Mersenne Twister the perfect pseudo-
random number generator. Panneton et al [11] recently demonstrated that the Mersenne Twister
escapes “zeroland” very slowly: When initialized with a state vector in which only one bit is
non-zero, it typically takes O(106) random numbers before approximately half of the bits in the
state vector are 1. WELL generators [11] fare much better in this respect. The Mersenne Twister
by construction also fails tests looking for linear dependencies in long sequences of bits [3, 11].

We would like to conclude this report with a piece of advice: Think very carefully before
re-using random numbers in any simulation study!
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A. Re-seeding induced random walk in Z-scores

In this appendix, we derive Eq. 6, demonstrating that re-seeding the PRNG for each starting
point s induces a random walk in the Z-scores obtained for subsequent starting points.

As discussed in Section 3.2, we assume that all games end in ruin for s ≤ 950. We will also
exploit that the expressions for mean and variance of the game duration duration given by Kim
et al [5, p. 200] for p � 1

2 are all of the form

µ(s) = as + O
�

1
qN−s

�
, (10)

σ2(s) = bs + O
�

x
qN−s

�
. (11)

Parameters a, b, and q are given in Table 1. For N = 1000, the linear approximations hold very
well for s ≤ 950.

We now turn to the random walk analysis. Let us assume that we have performed K games
for a given starting point s and have obtained the mean trial duration ts, where ts is an individual
realization of the random variable T̄ (s). As discussed above, we assume that all trials end in ruin.
Any game starting at s must have included exactly s more losing than winning coin tosses out
of a total of ts tosses. Each coin toss corresponds to one pseudorandom number drawn from the
PRNG. In total, the K games used rs = Kts pseudorandom numbers, of which Ks more were
losing than winning numbers.

Now consider a new set of K games beginning at starting point u > s, all of which we assume
to end in ruin. At the end of each such game, u more losing than winning random numbers will
have been consumed. Since the PRNG is seeded with the same seed before the series of games
beginning at s and u, respectively, we know that the first rs = Kts random numbers consumed by
the series of games played from u, will be the same as for the series played from s. We can then
estimate that these rs re-used random numbers have been used to perform the first

k̂ =
sK
u

(12)

games starting from u. The validity of this estimate hinges on the fact that practically all games
end in ruin: If a game ends in ruin anyways, it largely does not matter in which precise order
wins and losses occur in a game, and we may consider the total surplus of losing numbers across
a series of games. We also ignore here the complication that k̂ generally will not be an integer
number of games.

The remaining K − k̂ games for the series with starting point u will then be played using new
pseudorandom numbers. Provided that the PRNG generates uncorrelated numbers uniformly
distributed on the unit interval, these remaining trials have an expected duration of µ(u) with
standard deviation σ(u). The expected number of random numbers consumed by all K games
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for starting point u is now given by the number of re-used numbers, plus the number of fresh
numbers:

�R(u)|rs� = rs + µ(u)(K − k̂) , (13)

while the standard deviation in the total trial durations arises from the fresh random numbers
only, so we obtain

��
(∆R(u))2|rs

�
= σ(u)

�
K − k̂ . (14)

From these expressions we immediately obtain the expected mean and standard deviation of the
game duration, T̄ (u), by dividing by the total trial number K and thus the expected Z score by
inserting into Eq. 4

�Z(u)|ts� =
�R(u)|rs� /K − µ(u)
σ(u)/

√
K

=
ts − µ(u) s

u

σ(u)/
√

K
, (15)

and

��
(∆Z(u))2|ts

�
=

��
(∆R(u))2|rs

�
/K

σ(u)/
√

K
=

�
1 −

s
u
. (16)

Since the specific values for mean game duration ts, total number of tosses/numbers rs and Z-
score zs are directly related through Eqs. 1 and 4, we can used them interchangeably to express
that the expectations for the series of games played for starting point u is conditional on the
outcome of the series played for starting point s.

To obtain a compact expression predicting the value of Z(u) at u > s for given zs, we express
ts in Eq. 15 in terms of zs by virtue of Eq. 4 and express the new starting point as u = s + δ for
δ ≥ 1. Exploiting further the linear approximations for µ(u) and σ2(u) from Eqs. 10–11, and
expressing the expected standard deviation as a ±-term, we obtain

�Z(s + δ)|s, zs� =
zs�
1 + δs

±
1

�
1 + s

δ

. (17)

The most interesting case is to predict the Z score for the starting point following s, i.e., δ = 1,
where Eq. 17 yields

�Z(s + 1)|s, zs� =
zs�
1 + 1

s

±
1

√
1 + s

. (18)
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