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Stochastic resonance in neuron models: Endogenous stimulation revisited
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The paradigm of stochastic resonance~SR!—the idea that signal detection and transmission may benefit
from noise—has met with great interest in both physics and the neurosciences. We investigate here the
consequences of reducing the dynamics of a periodically driven neuron to a renewal process~stimulation with
reset or endogenous stimulation!. This greatly simplifies the mathematical analysis, but we show that stochastic
resonance as reported earlier occurs in this model only as a consequence of the reduced dynamics.
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I. INTRODUCTION

The improvement of signal transmission and detect
through noise has been studied keenly over the past
decades under the paradigm of stochastic resonance; fo
cent reviews see Refs.@1# and @2#. This holds true for the
neurosciences in particular, which have for a long time b
puzzled by the seemingly irregular activity of the nervo
system. A long series of experiments has now firmly est
lished that sensory neurons of various modalities ben
from ambient noise@3–9#.

Theoretical efforts to explain stochastic resonance in n
ronal systems had to abstract rigorously from the biolog
complexity of real neurons to facilitate mathematical tre
ment @10–14#. The leaky integrate-and-fire model neuro
~LIF! @15# is likely the most widely studied of these abstra
neuron models, especially in investigations of the neuro
code @16–21#. The main advantages of this model are
simplicity and lack of memory: Each time the neuron h
been excited sufficiently to fire a spike~output pulse!, it is
reset to a predefined state, erasing all memory of past in
One may thus analyze the intervals between spikes s
rately, and build the complete spike train fired by the neu
by concatenation of intervals.

Time-dependent stimulation complicates this procedu
though, as a different stimulus is now presented during e
interspike interval. This precludes a straightforward analy
of global properties of the spike train, such as its pow
spectral density. Since stochastic resonance is typically
fined in terms of the signal-to-noise ratio in response to
riodic stimulation, either of the following is required:~i! fur-
ther simplification of the model, or~ii ! the development of
better techniques.

The latter is certainly preferable and has been achieve
the meantime@22–24#. Stochastic resonance with respect
both noise amplitude and signal frequency has been fo
and may be relevant to signal processing in neuronal
works @25,26#. Results obtained for the leaky integrate-an
fire neuron are in qualitative agreement with those obtai
from more realistic, nonlinear models@27,28#, indicating that
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the abstraction to the LIF model was acceptable.
Albeit stochastic resonance in the leaky integrate-and-

model may thus be considered a solved problem, we wo
like to return here to some earlier studies@29–31,23#, which,
at least in parts, followed the simplifying approach~i!. These
studies assumed that the same stimulus was presented d
each interspike interval, i.e., that the originally period
stimulus was reset to a fixed phasef0 after each spike. All
intervals are thus equivalent, and global properties of
spike train may be computed from the interspike-interval d
tribution for a single interval using the methods of renew
theory @32#. Lánský coined the termsendogenousandexog-
enousstimulation for stimulation with and without reset, re
spectively@33#.

This stimulus-reset assumption is patently unbiologi
for virtually all neurons, since it would require the neuron
fully control the input it receives. The reset assumption w
therefore justified as an approximation to the full, exogeno
dynamics of a periodically driven noisy neuron along t
following lines @34#: If the neuron is driven by a periodic
subthreshold stimulus~a stimulus too weak to evoke spike
in the absence of noise!, then the neuron will fire all spikes a
approximately the same stimulus phasef* after transients
have died out. This phase corresponds roughly to the ph
at which the membrane potential is maximal in the abse
of noise. Such firing patterns are found in sensory neuro
e.g., in the auditory nerve@35# or cold-receptor neurons
@36,37#. Thus, roughly the same stimulus, starting fro
phasef(t50)'f* , is presented during each interval. R
setting the stimulus phase to a fixed phasef(t50)5f0 will
therefore introduce only minor errors.

This reasoning suffers from an essential shortcomi
namely the choice of afixed reset phasef0 independent of
both stimulus and noise. This reset phase is a free param
of the model, which has no counterpart in biological neuro
We show here that stochastic resonance in terms of
signal-to-noise ratio as studied previously in the LIF mod
with stimulus reset@30,31,23# occurs because the model ne
ron adapts best to the free parameter ‘‘reset phase’’ fo
particular noise amplitude. The signal-to-noise ratioas de-
fined in those studiesdiverges monotonically for vanishing
noise if the reset phase is adapted to stimulus and noise
plausible way.
©2001 The American Physical Society16-1
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The leaky integrate-and-fire model and the methods
plied in analysis are briefly reviewed in Sec. II; see Ref.@26#
for details. Results are presented in Sec. III and summar
in Sec. IV.

II. MODEL AND METHODS

A. Leaky integrate-and-fire neuron

The leaky integrate-and-fire neuron model sketches
neuron as a capacitor with leak current, which is charged
an input currentI (t) until the potentialv(t) across the ca-
pacitor~membrane potential! reaches a thresholdQ. At that
instant, an output spike is recorded and the potential res
v r,Q. The assumption that the stimulus is reset after e
spike as well implies that the membrane potential evol
according to

v̇~t!52v~t!1m1q cos~Vt1f0!1sj~t!, ~1!

in between any two spikes@15#; t is intra-interval time, i.e.,
t runs from zero in every interval.m is the DC component o
the stimulus,q its AC amplitude,V the nominal frequency
andf0 the fixed but arbitrary reset phase. All quantities a
measured in their natural units, i.e., the membrane time c
stanttm and thresholdQ. v r50 is assumed throughout. Th
noise term in Eq.~1! subsumes both biochemical and ne
work noise@38,39#, and is taken to be Gaussian white noi
@^j(t)j(t8)&5d(t2t8)#. A different realization of the noise
is used for each interval. Sub-threshold stimuli are charac
ized by supt→`v(t)5m1q/A11V2,1 for s50. We re-
strict ourselves here to these stimuli, because they appe
be more relevant for the encoding of periodic signals in s
sory systems than superthreshold stimuli@16,40#.

The sequencet1 ,t2 , . . . ,tk , . . . of intervals corre-
sponds to an output spike trainf (t)5(kd(t2tk) with spike

FIG. 1. Effective stimulus and corresponding spike trains
fixed reset phasesf050 ~top! andf05p/2 ~bottom! are shown in
black, while the nominal stimuli are shown in grey. The reset
small consequences in the first case, while the effective stim
differs markedly from the nominal sinusoid for the latter.T
52p/V is the period of the nominal stimulus; amplitudes are
arbitrary units. Remaining stimulus parameters:m50.9, q50.1,
V50.1p, s50.008.
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times tk5( j <kt j . This spike train is evoked by aneffective
stimulusconsisting of piecewise sinusoids of lengthtk , as
shown in Fig. 1. In contrast, we call the pure sinuso
cos(Vt1f0) thenominal stimulus. Figure 1 indicates that the
effective stimulus approximates the nominal stimulus fo
reset phase off0'0, while it is an irregular sequence o
piecewise sinusoids for other choices of the reset phase.
therefore focus here onf050 in accordance with earlie
work @30,31,23#.

Because of the stimulus reset and the whiteness of
noise, all interspike interval lengthstk are statistically inde-
pendent, identically distributed random variables with de
sity r(t). The latter can be computed numerically or a
proximated in closed form@26,41,42#. The sequence o
intervals thus forms a renewal process, which is fully ch
acterized by the ISI densityr(t) @43#. Periodic sub-threshold
stimulation evokes multimodal ISI densities as shown in F
2 for noise not too strong. The location of the first pe
depends on the reset phasef0, while subsequent peaks fo
low at intervals of the nominal stimulus periodT52p/V.
Comparable ISI distributions are found in sensory neur
@35,36,44#.

B. Signal-to-noise ratio

The performance of a signal processor is commonly m
sured in terms of the signal-to-noise ratio in studies on s
chastic resonance. Since the spike train elicited from the n
ron is a renewal process by virtue of the stimulus reset,
power spectral density~PSD! is given by@32,30#

S~v!5
1

p^t& S 112 Re
r̃~v!

12 r̃~v!
D , v.0, ~2!

where

r̃~v!5E
0

`

r~t!eivtdt ~3!

r

s
s

FIG. 2. Interspike-interval distribution in response to period
stimulation with reset to phasesf050 ~black! andf05p/2 ~grey!.
All else as in Fig. 1.
6-2
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STOCHASTIC RESONANCE IN NEURON MODELS: . . . PHYSICAL REVIEW E63 031916
is the Fourier transform of the ISI density and^t& the mean
interspike interval length; note thatr(t)50 for t,0 by
definition.

The input to the neuron is not purely sinusoidal due to
stimulus reset, and the maximum of the PSD will thus
shifted away from the stimulus frequencyV, see Fig. 3~a!.
We thus define the signal as the maximum of the PSD i
window aroundV @30,31#

Ŝ5S~V̂ !5max$S~v!u0.9V,v,1.1V% ~4!

and refer to the locationV̂ of the maximum aspeak fre-

quency. The signalŜ is undefined ifS(v) has no absolute
maximum within the window as, e.g., in Fig. 3~b!. The white
power spectrum of a Poissonian spike train of equal int
sity, SP5(p^t&)21, is used as reference noise level@45#,
whence the signal-to-noise ratio is

RSN5Ŝ/Sp5p^t&Ŝ. ~5!

Note that power spectral density and signal-to-noise r
~SNR! as defined above are calculated for infinitely lo
spike trains. Any strictly periodic component of the spi
train will thus give rise to singularities in the PSD. In th
reset model, coherence is broken by the stimulus reset
sulting in a continuous spectrum@46,26#. Due to the different
definitions, signal-to-noise ratios obtained from the L
model with and without stimulus reset cannot be compa
quantitatively@23#.

FIG. 3. Power spectral density for~a! reset phasef050, and
~b! f05p/2. The dashed horizontal line is the PSDSP of a Poisson
train of equal intensity; vertical dotted lines mark the interv
@0.9V,1.1V#, cf. Eq. ~4!. Note the lack of power in the vicinity of
the nominal stimulus frequencyV for reset phasef05p/2. All else
as in Fig. 1.
03191
e
e

a

-

io

e-

d

The spectrum defined by Eq.~2! may have very narrow
peaks for low noise, whence numerical evaluation of E
~2!–~5! may require very high frequency resolution.

C. Preferred firing phase

If the stimulus is not reset after each spike, the probabi
x (k11)(c) for thek11-st spike to occur at stimulus phasec
can be expressed in terms of the corresponding distribu
for the k-th spike as

x (k11)~c!5E
2p

p

T~cuf!x (k)~f!df, ~6!

whereT(cuf) is a stochastic kernel@47,24#. For k→`, the
firing phase distribution will approach a stationary distrib
tion x (s) and we choose the preferred firing phase as
phase at which the neuron most likely fires,

f* 5arg max
c

x (s)~c!. ~7!

Using this preferred phase as reset phase will yield a
able approximation to stimulation without reset only if th
firing phase distribution is sharply concentrated aroundf* ,
and has only a single maximum. To ensure this, we req
that the vector strength@48# of the distribution fulfills

r 5u^eif&u5U E
2p

p

eifx (s)~f!dfU>0.9. ~8!

This condition is generally met by the sub-threshold stim
combined with weak noise studied here. Multimodal firin
phase distributions are observed only for slow stimuli in t
presence of intermediate to large noise, and for superthr
old stimuli. We are therefore not concerned with complic
tions that may arise from mode-locking as observed in
latter cases@49–52#.

III. RESULTS

A. Fixed reset phase

For fixed reset phase,f050, the model neuron show
typical stochastic resonance behavior, i.e., a maximum of
SNR at an intermediate albeit small noise amplitudesmax as
shown in Fig. 4~a! @30#. The mechanism inducing stochast
resonance is indicated in Fig. 4~b!: the maximal SNR is
reached when the peak frequencyV̂ and the reset frequenc
V res52p/Tres coincide, whereTres is the mode of the ISI
density, i.e., the most probable interval between two stimu
resets. Coincidence of reset and peak frequencies thus
cates synchronization between the stimulus reset and the
relations dominating the power spectrum of the output sp
train, yielding optimal encoding of the nominal stimulus.

This effect may intuitively be explained as follows. As
sume that the peaks of the ISI distribution are located aro
t5nT1e, e.0, for a given choice of reset phase and sm
noise. The effective stimulus will then be a close to t
nominal stimulus, cf. Fig. 1~a!. The neuron will fire at
shorter intervals as the noise is increased, and for a partic
noise amplitude will the peaks of the ISI distribution be ce
tered about multiples of the stimulus periodT. The effective

l
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HANS E. PLESSER AND THEO GEISEL PHYSICAL REVIEW E63 031916
stimulus will then be reset in intervals ofnT. The neuron is
thus on average driven by a periodic stimulus with per
V res5V, evoking as periodic a spike train as possible, i
one maximizing the signal-to-noise ratio. This explanat
ignores all jitter in spike timing, which reduces the SNR. T
SNR maximum is thus not found for that input noise amp
tude which yieldsV res5V (s'0.018), but for somewha
weaker input noise, corresponding to smaller output jitter,
Fig. 4~b!.

B. Noise-adapted reset phase

A LIF neuron driven by a sinusoidal stimulus which isnot
reset after each spike will approach a stationary firing pat
@47,24#. The preferred firing phase in the stationary state
given by Eq. ~7! and depends on the noise amplitude
shown in Fig. 5~c!: the neuron fires at later phases for weak
noise. Note that interspike intervals will be multiples of t
stimulus periodT in this regime, since the neuron fires a
spikes at the same phasef* ~up to jitter!.

This observation suggests how to construct a proper
proximation to the full LIF dynamics using the reset mod
for each stimulus and each noise amplitude, determine
preferred phase from Eq.~7! and use this phase as res
phase,

f05f0~s;m,q,V!5f* ~s;m,q,V!. ~9!

The stimulus is then reset in intervals of multiples of t
stimulus period, so that the effective stimulus will diffe
from the nominal stimulus only through jitter. This jitter van
ishes as input noise vanishes, whence perfect periodic st

FIG. 4. ~a! Signal-to-noise ratio vs. input noise amplitude f

fixed reset phasef050. ~b! Peak frequencyV̂ ~solid! and reset
frequencyV res ~dashed! vs. noise amplitude for fixed reset phas
The dotted horizontal line marks the nominal stimulus freque
V50.1p, while the dotted vertical line marks the optimal noi
amplitude. Stimulus parameters as in Fig. 1.
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lation will be attained fors→0. Consequently, the signa
to-noise ratio will diverge for vanishing noise as shown
Fig. 5~a!. The reset frequency is identical to the nomin
frequency by construction,V res5V, cf. Fig. 5~b!. The peak
frequency, on the other hand, converges to the stimulus
quency as noise vanishes,V̂→V res5V, as the effective
stimulus becomes identical to the nominal one.

We shall now make this argument rigorous. The ISI d
tribution of a LIF model neuron is well approximated by@42#

r~t!'h~t!expF2E
0

t

h~s!dsG , ~10!

h~t!5expF2S 12v0~t!

s D 2G , ~11!

where v0(t) is the membrane potential in the absence
noise, i.e., the solution of Eq.~1! for s50. We consider the

y

FIG. 5. ~a! Signal-to-noise ratio vs. input noise amplitude f
adapted reset phasef05f* (s) ~symbols! and for fixed reset phase
f050 for comparison~dashed!. The solid line is the approximation

of Eq. ~16!. ~b! Peak frequencyV̂ ~solid! and reset frequencyV res

~dashed! vs. noise amplitude for fixed reset phase. The dotted
marks the nominal stimulus frequency.~c! Preferred frequency
f* (s) vs. noise. Stimulus parameters as in Fig. 1.
6-4
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STOCHASTIC RESONANCE IN NEURON MODELS: . . . PHYSICAL REVIEW E63 031916
limit of small noise (s!1) and slow stimulation (T@1). In
that case, we can neglect transient terms in the memb
potential to obtain

v0~t!5m1q̂ cos~Vt1Vz!1O~e2t!, ~12!

whereq̂51/A11V2, andz5(f02arctanV)/V. The hazard
h(t) will thus be a sequence of narrow peaks around
maxima of v0(t), i.e., aroundtn5nT2z. ISI lengths are
multiples of the stimulus period for adapted reset phase
construction, whencez50 for f05f* (s).

As peaks are narrow, we may take the exponential term
Eq. ~10! to be constant across each peak; it merely redu
the peak amplitude by a factorg for each subsequent pea
The ISI distribution can thus be approximated as a supe
sition of dampened copies of the hazard function cente
abouttn5nT, i.e.,

r~t!' (
n51

`

gn21expF2S 12v0~t2tn!

s D 2G ~13!

with g5exp(2*T/2
3T/2h(s)ds). Expanding the exponent sep

rately for each summand and retaining only terms of low
order int2tn yields,

r~t!'c(
n51

`

gn21expS 2
V2~t2nT!2

hs2 D , ~14!

whereh215q̂(12m2q̂), and c is a normalization factor.
The interspike-interval distribution has thus been reduce
a sum of Gaussians. This approximation holds well for sm
noise, as shown in Fig. 6.

The Fourier transform of the ISI distribution is thus

r̃~v!5

~12g!expF2
hs2

4 S vT

2p D1 ivTG
12g exp~ ivT!

. ~15!

In the limit of small noise and for adapted reset phase,
effective stimulus becomes equal to the nominal stimu
and the spectral power will be maximal at the nominal stim
lus frequency in this limit, i.e.,V̂→V for s→0, cf. Fig.
5~b!. The signal-to-noise ratio is therefore

FIG. 6. Gaussian approximation of Eq.~14! ~grey! to the
interspike-interval distribution~black! for the same stimulus param
eters as before ands50.0046.
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S~V!

SP
'coth

hs2

8
~s!1! ~16!

in good agreement with numerical results for the exact mo
@solid line in Fig. 5~a!#. We find in particular that the signal
to-noise ratio diverges for vanishing noise in the Gauss
approximation.

IV. CONCLUSIONS

The aim of this paper was to clarify whether the respon
of the leaky integrate-and-fire neuron to periodic subthre
old stimulation can be approximated as a renewal proces
particular, we wanted to know whether stochastic resona
at weak noise as reported in earlier work@30,23# is a genuine
property of the LIF neuron, or rather an artifact of the stim
lus reset, which was introduced to reduce the full neuro
dynamics to a renewal process.

We argued that renewal~endogenous! dynamics are a
good approximation to the full~exogenous! dynamics only if
the phasef0, to which the stimulus is reset after each spik
is adapted to the stimulus parameters, especially the n
amplitude, in such a way that the neuron fires most likely
phasef0. We showed that stochastic resonance does
occur in this case. Stochastic resonance is only found if
reset phase is held fixed as the amplitude of the input nois
varied.

There is no biologically plausible way in which a neuro
could reset a stimulus impinging on it to a fixed phas
Lánskýsuggested that neurons driven by internally genera
membrane potential oscillations could reset their oscillato
a fixed phase, hence the term endogenous stimulation@33#.
Cold receptor cells are driven by internal subthreshold os
lations, but do not reset their internal oscillator upon firi
@37#. It is thus highly unlikely to find neurons which reset th
oscillator that drives them to a fixed phase independen
stimulus properties, i.e., follow genuine endogenous dyna
ics. This, in turn, means that any effect arising solely fro
the reset to a fixed stimulus phase will not be found in r
neurons. The stochastic resonance effect reported in
@30# ~see also Ref.@23#! is thus a model artifact.

We stress that this conclusion applies only to the parti
lar type of stochastic resonance discussed here. The le
integrate-and-fire neuron benefits from stochastic resona
when encoding periodic signalswithout reset ~exogenous
stimulation!, as shown in@22,24,23#. This resonance occur
at noise amplitudes which are about one order of magnit
larger than the resonance found in the model with reset
fixed phase. The crucial difference is that studies on ex
enous stimulation consider either explicitly or implicitly th
power spectral density of a spike train of finite duratio
while an infinite spike train is assumed here, cf. Sec. II
Trains of very low intensity, but precisely phase-locking
the stimulus, as found for very weak noise, yield a sm
finite-time signal-to-noise ratio, while their infinite-tim
SNR may be large.

Other noise-induced resonance phenomena found in
LIF with stimulus reset, e.g., in the interspike-interval dist
bution or the mean ISI length@29,34#, are not directly af-
6-5
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fected by our finding either. Indeed, Shimokawaet al. found
comparable resonance effects in terms of the ISI distribu
for stimulation with and without reset@22#. These resonance
occur at much larger noise amplitudes than studied here;
also Ref.@23#.

Our findings should, on the other hand, not be restricte
the particular neuron model studied here. We expect
stochastic resonance may be introduced to nearly any thr
old system when the full dynamics under periodic forcing
reduced to a renewal process by resetting the forcing
noise-independent phase after each threshold crossing.
odic forcing may then be recovered by adjusting the no
v.
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such that threshold crossings occur around the predefi
reset phase, whence periodic forcing is recovered, and o
mal output attained. Unless the fixed reset phase has a c
terpart in the physical system under study, this resonanc
obviously an artifact of a simplification carried too far.
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