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Stochastic resonance in neuron models: Endogenous stimulation revisited
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The paradigm of stochastic resonan&R)—the idea that signal detection and transmission may benefit
from noise—has met with great interest in both physics and the neurosciences. We investigate here the
consequences of reducing the dynamics of a periodically driven neuron to a renewal storgation with
reset or endogenous stimulatjofhis greatly simplifies the mathematical analysis, but we show that stochastic
resonance as reported earlier occurs in this model only as a consequence of the reduced dynamics.
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[. INTRODUCTION the abstraction to the LIF model was acceptable.
Albeit stochastic resonance in the leaky integrate-and-fire
The improvement of signal transmission and detectiormodel may thus be considered a solved problem, we would
through noise has been studied keenly over the past twiike to return here to some earlier studj@9-31,23, which,
decades under the paradigm of stochastic resonance; for ratleast in parts, followed the simplifying approach These
cent reviews see Ref§l] and[2]. This holds true for the studies assumed that the same stimulus was presented during
neurosciences in particular, which have for a long time bee®ach interspike interval, i.e., that the originally periodic
puzzled by the seemingly irregular activity of the nervousstimulus was reset to a fixed phagg after each spike. All
system. A long series of experiments has now firmly estabintervals are thus equivalent, and global properties of the
lished that sensory neurons of various modalities benefispike train may be computed from the interspike-interval dis-
from ambient nois¢3-9]. tribution for a single interval using the methods of renewal
Theoretical efforts to explain stochastic resonance in neutheory[32]. Lansky coined the term&ndogenousnd exog-
ronal systems had to abstract rigorously from the biologicaknousstimulation for stimulation with and without reset, re-
complexity of real neurons to facilitate mathematical treat-spectively[33].
ment [10-14. The leaky integrate-and-fire model neuron This stimulus-reset assumption is patently unbiological
(LIF) [15] is likely the most widely studied of these abstract for virtually all neurons, since it would require the neuron to
neuron models, especially in investigations of the neuronallully control the input it receives. The reset assumption was
code[16-21]. The main advantages of this model are itstherefore justified as an approximation to the full, exogenous
simplicity and lack of memory: Each time the neuron hasdynamics of a periodically driven noisy neuron along the
been excited sufficiently to fire a spikeutput pulsg, it is  following lines [34]: If the neuron is driven by a periodic
reset to a predefined state, erasing all memory of past inpusubthreshold stimulu& stimulus too weak to evoke spikes
One may thus analyze the intervals between spikes sepa the absence of noigethen the neuron will fire all spikes at
rately, and build the complete spike train fired by the neurorapproximately the same stimulus phagé after transients
by concatenation of intervals. have died out. This phase corresponds roughly to the phase
Time-dependent stimulation complicates this procedureat which the membrane potential is maximal in the absence
though, as a different stimulus is now presented during eachf noise. Such firing patterns are found in sensory neurons,
interspike interval. This precludes a straightforward analysi®.g., in the auditory nerv¢35] or cold-receptor neurons
of global properties of the spike train, such as its powel36,37. Thus, roughly the same stimulus, starting from
spectral density. Since stochastic resonance is typically dgshased(7=0)~ ¢*, is presented during each interval. Re-
fined in terms of the signal-to-noise ratio in response to pesetting the stimulus phase to a fixed phége=0)= ¢, will
riodic stimulation, either of the following is require@) fur- therefore introduce only minor errors.
ther simplification of the model, ofii) the development of This reasoning suffers from an essential shortcoming,
better techniques. namely the choice of éixedreset phase), independent of
The latter is certainly preferable and has been achieved iboth stimulus and noise. This reset phase is a free parameter
the meantimg22—-24. Stochastic resonance with respect toof the model, which has no counterpart in biological neurons.
both noise amplitude and signal frequency has been foun&e show here that stochastic resonance in terms of the
and may be relevant to signal processing in neuronal nesignal-to-noise ratio as studied previously in the LIF model
works [25,26]. Results obtained for the leaky integrate-and-with stimulus resef30,31,23 occurs because the model neu-
fire neuron are in qualitative agreement with those obtainedon adapts best to the free parameter “reset phase” for a
from more realistic, nonlinear moddl&7,28, indicating that  particular noise amplitude. The signal-to-noise rati de-
fined in those studiediverges monotonically for vanishing
noise if the reset phase is adapted to stimulus and noise in a
*Corresponding author. Email address: hans.plesser@itf.nlh.no plausible way.
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FIG. 1. Effective stimulus and corresponding spike trains for o S o
fixed reset phaseg,=0 (top) and ¢o= /2 (bottom are shown in FIG. 2. In_tersplke-lnterval distribution in response to periodic
black, while the nominal stimuli are shown in grey. The reset hasStimulation with reset to phasef, =0 (black and ¢o= /2 (grey).
small consequences in the first case, while the effective stimulul! else as in Fig. 1.
differs markedly from the nominal sinusoid for the lattéF.
=2m/Q is the period of the nominal stimulus; amplitudes are intimest,=X;-7;. This spike train is evoked by affective
arbitrary units. Remaining stimulus parametess=0.9, q=0.1,  stimulusconsisting of piecewise sinusoids of lengtp, as
0=0.17, 0=0.008. shown in Fig. 1. In contrast, we call the pure sinusoid
cost+ &) thenominal stimulusFigure 1 indicates that the
The leaky integrate-and-fire model and the methods apeffective stimulus approximates the nominal stimulus for a
plied in analysis are briefly reviewed in Sec. Il; see R2€]  reset phase ofy,~0, while it is an irregular sequence of
for details. Results are presented in Sec. Il and summarizegiecewise sinusoids for other choices of the reset phase. We

T

in Sec. IV. therefore focus here oy=0 in accordance with earlier
work [30,31,23.
Il. MODEL AND METHODS Because of the stimulus reset and the whiteness of the
_ _ noise, all interspike interval lengthg are statistically inde-
A. Leaky integrate-and-fire neuron pendent, identically distributed random variables with den-

The leaky integrate-and-fire neuron model sketches th&ity p(7). The latter can be computed numerically or ap-
neuron as a capacitor with leak current, which is charged bproximated in closed forn{26,41,43. The sequence of
an input current (t) until the potentia|v(t) across the ca- intervals thus forms a renewal process, which is fU”y char-
pacitor (membrane potentipteaches a threshold. At that  acterized by the ISI densiy( ) [43]. Periodic sub-threshold
instant, an output Spike is recorded and the potentia| reset @timulation evokes multimodal I1SI densities as shown in Flg
v,<O. The assumption that the stimulus is reset after eac® for noise not too strong. The location of the first peak

spike as well implies that the membrane potential evolveglepends on the reset phagg, while subsequent peaks fol-
according to low at intervals of the nominal stimulus peridd=2/().

_ Comparable ISI distributions are found in sensory neurons
v(r)=—v(7)+ptqceogQr+go)+aé(n), (1) [353644

in between any two spikd45]; 7 is intra-interval time, i.e.,
7 runs from zero in every intervak is the DC component of
the stimulusg its AC amplitude,Q) the nominal frequency, The performance of a signal processor is commonly mea-
and ¢, the fixed but arbitrary reset phase. All quantities aresured in terms of the signal-to-noise ratio in studies on sto-
measured in their natural units, i.e., the membrane time corhastic resonance. Since the spike train elicited from the neu-
stantr,, and threshol®. v, =0 is assumed throughout. The fon is a renewal process by virtue of the stimulus reset, its
noise term in Eq(1) subsumes both biochemical and net- Power spectral densitPSD) is given by[32,30

B. Signal-to-noise ratio

work noise[38,39, and is taken to be Gaussian white noise 1 ()
[(£(t)£(t"))=8(t—t')]. A different realization of the noise S(w)= ——| 142 Re&)  @>0, (2
is used for each interval. Sub-threshold stimuli are character- m(T) 1-p(w)

ized by sup_.v(t)=u+q/1+0%<1 for ¢=0. We re-
strict ourselves here to these stimuli, because they appear {phere
be more relevant for the encoding of periodic signals in sen-
sory systems than superthreshold stinii6,40].
The sequencer;,m, ...,7, ... Of intervals corre- (@)= pr(T)eide @)
sponds to an output spike trafiit) ==, 5(t—t,) with spike 0
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(a) B ' ' ' ' ] The spectrum defined by E) may have very narrow
|- peaks for low noise, whence numerical evaluation of Egs.
(2)-(5) may require very high frequency resolution.
iE C. Preferred firing phase
;}é\ If the stimulus is not reset after each spike, the probability
X&) for thek+ 1-st spike to occur at stimulus phage
can be expressed in terms of the corresponding distribution
for the k-th spike as
= [ Thosds ®
® e ' ' ' ' T where7(#| ¢) is a stochastic kerngh7,24). For k—x, the
- firing phase distribution will approach a stationary distribu-
tion x® and we choose the preferred firing phase as the
= phase at which the neuron most likely fires,
> ¢* =arg max (). )
2 v
Using this preferred phase as reset phase will yield a vi-
able approximation to stimulation without reset only if the
_soh o i firing phase distribution is sharply concentrated arodrid
0 o) 36 36 10 36 €6 and has only a single maximum. To ensure this, we require
o that the vector strengtf8] of the distribution fulfills
FIG. 3. Power spectral density f¢a) reset phaseb,=0, and -
(b) ¢o= w/2. The dashed horizontal line is the PSpof a Poisson r= |<ei </>>| = f @ ¢>X(S)(d,)d¢ =0.9. (8)
train of equal intensity; vertical dotted lines mark the interval -7

[0.92,1.10], cf. Eq.(4). Note the lack of power in the vicinity of s congition is generally met by the sub-threshold stimuli
the nominal stimulus frequendy for reset phasebo= /2. All else ., mpined with weak noise studied here. Multimodal firing
asin Fig. 1. phase distributions are observed only for slow stimuli in the

. . . presence of intermediate to large noise, and for superthresh-
!stthe El?ur!etr trar}s{ormﬂ?f thet lStlhdenS'tj’anﬁ) thiomian old stimuli. We are therefore not concerned with complica-
interspike interval length; note thai(r)=0 for 7 Y tions that may arise from mode-locking as observed in the

definition
L . . . latter 49-52.
The input to the neuron is not purely sinusoidal due to theatte case$49-52

stimulus reset, and the maximum of the PSD will thus be
shifted away from the stimulus frequen€y, see Fig. 8. Il RESULTS
We thus define the signal as the maximum of the PSD in a A. Fixed reset phase

window around® [30,31 For fixed reset phasep,=0, the model neuron shows
5=5(Q)=maxS(w)|0.MN<w<1.10} (4)  typical stochastic resonance behavior, i.e., a maximum of the
R SNR at an intermediate albeit small noise amplitudg, as
and refer to the locatio) of the maximum ageak fre-  shown in Fig. 4a) [30]. The mechanism inducing stochastic
guency The signalS is undefined ifS(w) has no absolute resonance is indicated in Fig(b}: the maximal SNR is
maximum within the window as, e.g., in Fig(t8. The white  reached when the peak frequerfdyand the reset frequency
power spectrum of a Poissonian spike train of equal inten¢) _ =27/T, coincide, whereT . is the mode of the ISI
sity, Sp=(m(7)) ", is used as reference noise 1eVéb],  density, i.e., the most probable interval between two stimulus
whence the signal-to-noise ratio is resets. Coincidence of reset and peak frequencies thus indi-
Ren=5/S,= m(1)S 5) cates synchronization between the stimulus reset and the cor-
N P ) relations dominating the power spectrum of the output spike
Note that power spectral density and signal-to-noise ratidrain, yielding optimal encoding of the nominal stimulus.
(SNR) as defined above are calculated for infinitely long This effect may intuitively be explained as follows. As-
spike trains. Any strictly periodic component of the spike sume that the peaks of the ISl distribution are located around
train will thus give rise to singularities in the PSD. In the 7=nT+ €, >0, for a given choice of reset phase and small
reset model, coherence is broken by the stimulus reset, reoise. The effective stimulus will then be a close to the
sulting in a continuous spectrum6,26. Due to the different nominal stimulus, cf. Fig. ®. The neuron will fire at
definitions, signal-to-noise ratios obtained from the LIFshorter intervals as the noise is increased, and for a particular
model with and without stimulus reset cannot be comparedoise amplitude will the peaks of the ISI distribution be cen-
quantitatively[23]. tered about multiples of the stimulus peri@dThe effective
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FIG. 4. (a) Signal-to-noise ratio vs. input noise amplitude for
fixed reset phaseby=0. (b) Peak frequency) (solid) and reset
frequency() s (dashedl vs. noise amplitude for fixed reset phase.
The dotted horizontal line marks the nominal stimulus frequency
0 =0.17, while the dotted vertical line marks the optimal noise
amplitude. Stimulus parameters as in Fig. 1.

stimulus will then be reset in intervals ofT. The neuron is
thus on average driven by a periodic stimulus with period
Q.= Q, evoking as periodic a spike train as possible, i.e., : : : : : :
one maximizing the signal-to-noise ratio. This explanation 0 0005 001 0015 002 0025 003
ignores all jitter in spike timing, which reduces the SNR. The ) ) ° ) . )
SNR maximum is thus not found for that input noise ampli- FIG. 5. (a) Slgnal-to-|10|se ratio vs. input noise amplitude for
tude which yieldsQ .=Q (o~0.018), but for somewhat 2dapted reset phagly=¢" (o) (symbolg and for fixed reset phase
weaker input noise, corresponding to smaller output jitter, cf.¢°=0 for comparisoridashest The Sc_’“d line is the approximation
Fig. 4(b). of Eqg. (16). (b) Peak frequency) (solid) and reset frequencd ;o¢
(dashed vs. noise amplitude for fixed reset phase. The dotted line
marks the nominal stimulus frequencic) Preferred frequency
¢* (o) vs. noise. Stimulus parameters as in Fig. 1.

B. Noise-adapted reset phase

A LIF neuron driven by a sinusoidal stimulus whichnist
reset after each spike will approach a stationary firing pattertation will be attained forc— 0. Consequently, the signal-
[47,24). The preferred firing phase in the stationary state igo-noise ratio will diverge for vanishing noise as shown in
given by Eq.(7) and depends on the noise amplitude asFig. 5a). The reset frequency is identical to the nominal
shown in Fig. %c): the neuron fires at later phases for weakerfrequency by construction) .= Q, cf. Fig. 5b). The peak
noise. Note that interspike intervals will be multiples of the frequency, on the other hand, converges to the stimulus fre-
stimulus periodT in this regime, since the neuron fires all quency as noise vanishe§—,.=Q, as the effective
spikes at the same phage (up to jitten. stimulus becomes identical to the nominal one.

This observation suggests how to construct a proper ap- e shall now make this argument rigorous. The ISI dis-

proximation to the full LIF dynamics using the reset model:tripytion of a LIF model neuron is well approximated [z42]
for each stimulus and each noise amplitude, determine the

preferred phase from Ed7) and use this phase as reset T
phase, p(r1=h(rrext - | 'his)ds|. (10
$o= do(o;11,0,Q2)= ¢* (o, 1,0,42). 9
his)= 1-vo(7) 2 11
The stimulus is then reset in intervals of multiples of the (1)=exq — o ’ (1)

stimulus period, so that the effective stimulus will differ
from the nominal stimulus only through jitter. This jitter van- wherevq(7) is the membrane potential in the absence of
ishes as input noise vanishes, whence perfect periodic stimuoise, i.e., the solution of Eql) for 0=0. We consider the
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04 — SQ)  po?
sn=—=—~cCoth—— (o<1) (16)
Sp 8
03}

in good agreement with numerical results for the exact model
[solid line in Fig. 3a)]. We find in particular that the signal-
02} _ to-noise ratio diverges for vanishing noise in the Gaussian
approximation.

p(m

0.1 . IV. CONCLUSIONS

The aim of this paper was to clarify whether the response
0 . . . . . . . Py - i
0 10 20 30 40 50 60 70 of the_ Ieaky_ integrate-and f|re_ neuron to periodic subthresh

. old stimulation can be approximated as a renewal process. In
FIG. 6. Gaussian approximation of E@l4) (grey) to the g?\';\tllggll(a:]’o\gi \;V:?ée%rttzg?s\éva\mr;t\?ver Stg%hic’;lsélcerﬁi?nneance
interspike-interval distributiofblack) for the same stimulus param- P 080, . 9 .
_ property of the LIF neuron, or rather an artifact of the stimu-
eters as before and=0.0046. . X
lus reset, which was introduced to reduce the full neuronal

limit of small noise ¢<1) and slow stimulation{>1). In  dynamics to a renewal process. _
that case, we can neglect transient terms in the membrane W€ argued that renewdendogenous dynamics are a
potential to obtain good approximation to the fu(exogenousdynamics only if

R the phasepy, to which the stimulus is reset after each spike,
vo(m)=p+qcofQr+Q0)+0(e™ "), (12 is adapted to the stimulus parameters, especially the noise

- _ amplitude, in such a way that the neuron fires most likely at
whereq=1/y1+Q7, and{=(¢o—arctant))/(2. The hazard ,pace s \We showed that stochastic resonance does not

h(7) will thus be a sequence of narrow peaks around the,ccyr in this case. Stochastic resonance is only found if the
maxima ofuvo(7), i.e., aroundr,=nT—{. ISl lengths are | oget phase is held fixed as the amplitude of the input noise is
multiples of the stimulus period for adapted reset phase by jeq.
construction, whencg=0 for ¢o=¢* (o). _ . There is no biologically plausible way in which a neuron
As peaks are narrow, we may take the exponential term iRgyg reset a stimulus impinging on it to a fixed phase.
Eq. (10) to be constant across each peak; it merely reducegznsky suggested that neurons driven by internally generated
the peak amplitude by a factar for each subsequent peak. nemprane potential oscillations could reset their oscillator to
T_h_e ISI distribution can ';hus be approximated as & superpoy fixed phase, hence the term endogenous stimul&8ah
sition of dampened copies of the hazard function centereg|q receptor cells are driven by internal subthreshold oscil-
aboutr,=nT, i.e., lations, but do not reset their internal oscillator upon firing
* 2 [37]. Itis thus highly unlikely to find neurons which reset the
p(1)~> y”lexr{— ) } (13

1-vo(7—7)

oscillator that drives them to a fixed phase independent of
n=1 stimulus properties, i.e., follow genuine endogenous dynam-

with y= exp(—f%Tz/zh(s)ds). Expanding the exponent sepa- ics. This, in turn, means that any effect arising solely from

rately for each summand and retaining only terms of lowesthe reset to a fixed stimulus phase will not be found in real
order in7— 7, yields, neurons. The stochastic resonance effect reported in Ref.

. [30] (see also Ref.23]) is thus a model artifact.
n—1 0%(7—nT)? We stress that this conclusion applies only to the particu-
p(T)%Cgl Y UeXp o2 ' 14 type of stochastic resonance discussed here. The leaky
g integrate-and-fire neuron benefits from stochastic resonance

where  '=q(1—x—q), andc is a normalization factor. when encoding periodic signalwithout reset (exogenous
The interspike-interval distribution has thus been reduced tgtimulation, as shown i{22,24,23. This resonance occurs
a sum of Gaussians. This approximation holds well for smalpt noise amplitudes which are about one order of magnitude

noise, as shown in Fig. 6. larger than the resonance found in the model with reset to a
The Fourier transform of the S| distribution is thus fixed phase. The crucial difference is that studies on exog-
2/ T enous stimulation consider eithe_r explipitly or ir_nplicitly 'ghe
(1_),)6)([{_ ﬂ(“’_ power spectral density of a spike train of finite duration,
4 \2m while an infinite spike train is assumed here, cf. Sec. Il B.
p(w)= 1— yexgioT) Trains of very low intensity, but precisely phase-locking to
o ) the stimulus, as found for very weak noise, yield a small
In the limit of small noise and for adapted reset phase, thgite-time signal-to-noise ratio, while their infinite-time
effective stimulus becomes equall to the nomma] sUmyIusSNR may be large.
and the spectral power will be nlaX|maI at the nominal stimu-  other noise-induced resonance phenomena found in the
lus frequency in this limit, i.e.Q— for 0—0, cf. Fig.  LIF with stimulus reset, e.g., in the interspike-interval distri-
5(b). The signal-to-noise ratio is therefore bution or the mean ISI lengtf29,34], are not directly af-

(o

+ioT

(19
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fected by our finding either. Indeed, Shimokaetaal. found  such that threshold crossings occur around the predefined
comparable resonance effects in terms of the ISI distributiomeset phase, whence periodic forcing is recovered, and opti-
for stimulation with and without res¢22]. These resonances mal output attained. Unless the fixed reset phase has a coun-
occur at much larger noise amplitudes than studied here; seerpart in the physical system under study, this resonance is
also Ref.[23]. obviously an artifact of a simplification carried too far.

Our findings should, on the other hand, not be restricted to
the particular neuron model studied here. We expect that
stochastic resonance may be introduced to nearly any thresh- ACKNOWLEDGMENTS
old system when the full dynamics under periodic forcing are
reduced to a renewal process by resetting the forcing to a We would like to thank G. T. Einevoll for critically read-
noise-independent phase after each threshold crossing. Peirig an earlier version of the manuscript. H.E.P. was sup-
odic forcing may then be recovered by adjusting the noisgorted by an EU Marie Curie Fellowship.
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