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Abstract
Experiments with sinusoidal visual stimuli in the early visual pathway have
traditionally been interpreted in terms of descriptive filter models. We present
an alternative mechanistic approach for interpretation of this type of data
recorded from X cells in the dorsal lateral geniculate nucleus (dLGN) of
cat. A general, linear, rate-based mathematical expression for the geniculate
transfer ratio, i.e. the ratio between the first-harmonic components of the
output of a geniculate relay cell and its retinal input, is derived. In linear
theory this ratio is independent of the signal processing occurring at the retinal
level. Further, the ratio is straightforwardly accessible in experiments due
to the presence of S-potentials, representing the retinal input, in extracellular
recordings from dLGN. The expression accounts for feedforward inputs from
retina and intrageniculate interneurons as well as feedback inputs from cortex
and the thalamic reticular nucleus and can be used to experimentally test
different mechanistic models for the geniculate circuitry. Two examples of
this are considered: a purely feedforward model incorporating relay cell inputs
from retinal ganglion cells and interneurons, and a model including cortical
feedback inhibition of relay cells via intrageniculate interneurons.

1. Introduction

The mathematical models used in neuroscience can be categorized into three types; descriptive,
mechanistic, and interpretive (Dayan and Abbott 2001). The purpose of descriptive
modelling is to summarize experimental data compactly in a mathematical form. In
mechanistic modelling one attempts to account for nervous system activity on the basis of
neuronal morphology, physiology and circuitry. This corresponds to the traditional physics
approach to mathematical modelling of natural systems. In interpretive modelling the goal is
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to model the functional roles of neuronal systems, i.e. relating neuronal responses to the task
of processing information useful to the animal.

An example of a commonly used descriptive model in visual neuroscience is the difference-
of-Gaussians (DOG) model introduced by Rodieck (1965) to describe the spatial aspect of
the receptive-field structure in retinal ganglion cells. For such cells the receptive fields are
small, roughly circular areas, and they exhibit so called centre–surround antagonism. Rodieck
described such receptive fields mathematically as the difference of two circularly symmetric
and concentric Gaussians. This choice is mathematically convenient and allowed him to derive
an analytical solution for the response to moving bars for such cells. The DOG has also been
used to describe receptive fields of relay cells in dorsal lateral geniculate nucleus (dLGN)
(Kaplan et al 1979, So and Shapley 1981, Dawis et al 1984, Norton et al 1989, Mukherjee
and Kaplan 1995, Uhlrich et al 1995). With this approach, however, limited insight is gained
on how the geniculate circuit modifies spatial receptive-field organization between the retinal
and geniculate levels. This question can only be addressed with mechanistic modelling, the
topic of this work.

The lack of detailed information about the neuronal circuitry has to a large extent prohib-
ited mechanistic modelling of neuronal circuits in the visual pathway. During the last decades
major progress has been made in mapping out the properties of the neurons in the dLGN and
their synaptic connections (see, for example, review papers by Sherman and Guillery (1996)
and McCormick (1992) and recent books by Steriade et al (1997) and Sherman and Guillery
(2001)). The dLGN is a, relatively speaking, simple system with few cell types and, compared
to cortex, modest divergence and convergence of synaptic connections. This limited com-
plexity makes the construction of mechanistic models less ambiguous and reduces the number
of unknown model parameters. Further, since a lot of both in vivo and in vitro physiological
experiments have been done on the dLGN circuit, data are available for falsification of tentative
mechanistic models.

Recently, we (Einevoll and Heggelund 2000, Einevoll et al 2000) have investigated
mechanistic rate-based models to study spatial transfer characteristics of dLGN utilizing data
from in vivo recordings from cat dLGN with circular-spot stimuli (Ruksenas et al 2000). The
mechanistic models for the dLGN circuit were based on physiological and anatomical findings,
while the descriptive DOG model was used to represent the spatial characteristics of the retinal
input. We studied simplified circuit models where a relay cell receives

(i) direct excitation from a single retinal ganglion cell, and
(ii) indirect feedforward inhibition from several retinal ganglion cells via intrageniculate

interneurons.

Neuronal responses of relay cells and dLGN interneurons to circular spot stimuli were
calculated, and the resulting analytical formulae were compared with the recent in vivo
results of Ruksenas et al (2000). Overall, the models were found to account well for the 22
recordings from nonlagged X-cells reported there (both efferent action potentials and afferent
S-potentials). Moreover, model predictions for

(i) receptive-field sizes of interneurons,
(ii) the amount of centre–surround antagonism for interneurons compared to relay cells, and

(iii) distance between neighbouring retinal ganglion cells providing input to interneurons,

were all found to be consistent with data available in the literature (Peichl and Wässle 1979,
Mastronarde 1992).

Enroth-Cugell and Robson (1966) calculated the spatial frequency response to sinusoidal
stimuli for retinal ganglion cells with receptive fields described by the DOG model. This is
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the basis of the spatial frequency analysis method, which has been widely applied in the
study of receptive fields during the last decades (Shapley and Lennie 1985). Frequency
response methods were originally developed in electrical engineering as a part of systems
theory, filter theory, and cybernetics (Oppenheim and Willsky 1997). In linear systems the
use of sinusoidal input is particularly useful since each frequency component can be probed
independently, and for (approximately) linear systems this input is therefore a popular choice.
To analyse the properties of the visual system in vivo, stationary or drifting gratings are used
as visual stimuli, and typically the first-harmonic component of the neuronal firing rate is
measured.

In a thorough study of the limulus lateral eye, drifting-grating experiments were used to
construct and test a mechanistic model for the limulus retina (Brodie et al 1978a, 1978b).
In mammals the mathematical interpretation of such experiments has so far been limited to
descriptive models (Shapley and Lennie 1985). In this paper we describe how different parts
of the retino-geniculo-cortical pathway affect the transformation of neuronal responses from
retinal ganglion cells to dLGN relay cells.

Linearity is a central assumption in our mathematical treatment. Since, for example, the
feedback to relay cells from cortex and TRN is expected to involve nonlinear as well as linear
effects, we do not expect our approach to account for all behaviour of the retino-geniculate
circuit. Instead it can be viewed as a linear, and thus readily analysable, entry point into
mechanistic models of the geniculate circuit. Given that the X pathway has been found to
respond approximately linearly when driven by drifting-grating stimuli (So and Shapley 1981,
Cheng et al 1995), our formalism should nevertheless be suitable for analysis of the X pathway.
The mathematical formalism is based on neuronal firing rates and is applicable to the study
of both spatial and temporal properties. In fact, it straightforwardly handles spatio-temporally
coupled receptive fields.

A particularly useful feature of using drifting gratings as stimuli is that in a linear, spatially
homogeneous theory the ratio of the first-harmonic components, the retino-geniculate transfer
ratio, is independent of the response of the retinal ganglion cell. Therefore, no specific
assumptions on the mathematical form of the receptive field of the retinal ganglion cells have to
be made when comparing experimental results for this ratio with model results. Fortunately, the
retino-geniculate transfer ratio is readily available in experiments since both relay cell action
potentials and its retinal input (S-potentials) can be measured in extracellular recordings in
dLGN (Kaplan and Shapley 1984).

Both relay cells and interneurons receive afferents from the cortex and thalamic reticular
nucleus (TRN) (Sherman and Guillery 2001). These feedback connections were not
incorporated in our simplified neuronal circuit used to explain the circular spot data of Ruksenas
et al (2000); with circular spot stimuli the feedback effects from TRN and cortex are expected
to play little role (see discussion in Einevoll and Heggelund (2000)). Feedback is, however,
expected to be more important for drifting-grating stimuli (Sillito et al 1993, Funke and Eysel
1998, Murphy et al 1999) which we consider here. In this work we have therefore included
feedback effects both from TRN and cortex in addition to the feedforward circuit considered
in Einevoll and Heggelund (2000).

In the next section we will briefly describe the traditional descriptive approach for
modelling data from drifting-grating experiments. General expressions of responses of dLGN
relay cells and the retino-geniculate transfer ratio are derived in section 3. These expressions
are based on the known synaptic coupling scheme between (and within) retina, dLGN, TRN
and cortex. In section 4 we give examples of how these transfer ratio expressions can be used
to probe specific mechanistic models of geniculate circuitry. Our findings are then discussed
in the final section.
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2. Descriptive modelling of drifting-grating data

The traditional way of analysing drifting-grating data to study the spatial receptive-field
organization of retinal and geniculate cells is by means of the DOG model. For retinal
ganglion cells of the X-type Enroth-Cugell and Robson (1966) described the response to a
drifting-grating stimulus as

R(t) =
∫∫

r

W (r)L(r, t) d2r (1)

where W (r) is the point-weighting functiondescribing the spatial characteristic of the receptive
field, and r = [x, y] is the two-dimensional position vector; the spatial integral over r extends
over all two-dimensional space. The luminance L(r, t) of a sinusoidal grating pattern drifting
in the x-direction is mathematically described by

L(r, t) = L0[1 + m cos(2πνx − 2π f t)], (2)

where L0 is the mean luminance, m is the contrast of the grating, and ν and f are the spatial and
temporal frequencies of the grating, respectively. The response of the ganglion cell stimulated
by a drifting grating is (in the case of an even-symmetry point-weighting function) then found
to be (Enroth-Cugell and Robson 1966)

R(t) = constant + L0mC(ν) cos(2πνx − 2π f t), (3)

where C(ν) is the cosine Fourier transform of the point-weighting function W (r). With the
point-weight function given as a DOG (Rodieck 1965), i.e.

W (r) = A1

πa2
1

e−r2/a2
1 − A2

πa2
2

e−r2/a2
2 , (4)

where r = |r|, C(ν) is found to be

C(ν) = A1e−π2a2
1ν2 − A2e−π2a2

2ν2
. (5)

Enroth-Cugell and Robson (1966) assumed C(ν) to be proportional with contrast sensitivity
and fitted the expression in equation (5) with data from contrast-sensitivity tuning curves from
experiments with drifting sinusoidal gratings.

This fitting procedure is illustrated in figure 1(a) for a more recent example data set
reported by Cheng et al (1995, figure 2) for an X relay cell in cat. Here neuronal responses
were measured directly, and both relay cell action potentials and so-called S-potentials were
recorded. An S-potential is assumed to be a post-synaptic potential that reflects a single-action
potential in the retinal afferents (Bishop et al 1958, Hubel and Wiesel 1961, Cleland et al 1971,
Kaplan and Shapley 1984). Following Cheng et al (1995), we will assume each S-potential to
represent an action potential in a single ganglion cell providing the (dominant) retinal input to
the relay cell.

The standard descriptive-modelling procedure for analysing such data has been to
separately fit the retinal-input and relay cell spatial frequency tuning curves to the DOG-
model expression in equation (5). This provides estimates for both the ganglion and relay
cell centre (A1) and surround (A2) weights as well as the corresponding width parameters a1

and a2. These fits are shown in figure 1(a), and we observe that the DOG model is able to
fit the experimental data well. However, no insight is gained regarding what aspects of the
retino-geniculate circuitry are responsible for the differences in neuronal responses between
the retinal and geniculate level. For such insight mechanistic, not descriptive, modelling is
needed, and this will be the topic of the remainder of this paper.
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Figure 1. (a) Spatial frequency tuning curves of a dLGN X cell (full dots) and its main retinal drive
(S-potentials, open dots). Replotted data from Cheng et al (1995, figure 2). Stimulus contrast was
32%, and the temporal frequency was 3.1 Hz. Amplitudes of first-harmonic responses to drifting
sinusoidal gratings are shown as functions of spatial frequency. Best fits to the DOG model,
equation (5), are shown. (b) Spatial frequency tuning curve for the transfer ratio, i.e. ratio between
response amplitudes for relay cells and retinal input, for the data in (a). Solid curve is best fit for
the discrete example feedforward model (Bff = 0.84, ηff = 0.086, ra = 0.70◦ in equation (33)).
Dashed curve is best fit for the feedforward model with Gaussian inhibition (Bff = 0.71, ηff = 0.46,
b2 = 1.64◦ in equation (34)). Dotted curve is best fit to example feedback model (Bfb = 0.71,
Dfb = 0.81, dfb = 1.95◦ in equation (41)).

3. Mechanistic modelling of drifting-grating data for dLGN cells

In this section we will describe a mechanistic modelling approach to interpret data from X-type
relay cells from experiments with drifting sinusoidal gratings used as stimuli.

3.1. Input from retinal ganglion cells

Our goal is not to do mechanistic modelling of the retinal circuit, and we merely need a
descriptive model for the retinal input in the mechanistic model of the dLGN circuit. For this,
a slight reformulation of the descriptive modelling described in the previous section is useful.

For a linear retinal ganglion cell at a position r in the visual field the response, i.e. the
firing rate, can be written as

R̂g(r, t) =
∫

τ

∫∫
r0

Gg(r − r0, τ )s(r0, t − τ ) d2r0 dτ (6)

if one assumes linearity and time invariance. Here, Gg(r, τ ) is the spatio-temporal impulse–
response function, directly related to the receptive field of the retinal ganglion cell (Heeger
1991). This integral is essentially a convolution between stimulus and impulse–response
functions (Heeger 1991). The assumption of linearity seems to be justified for most X-type
ganglion cells, while it is generally not applicable to Y-type cells (Enroth-Cugell and Robson
1966, Hochstein and Shapley 1976). In equation (6), s(r, t) represents the visual stimulus
presented at position r = [x, y] at time t . The spatial integral over r0 goes over all two-
dimensional space. We have chosen to let the temporal integration go from τ = −∞ to ∞ to
correspond with the general expression for the Fourier transform. From causality it follows
that Gg(r, τ < 0) = 0, so the lower integration boundary in equation (6) could also be set to
τ = 0.
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With a one-dimensional sinusoidal drifting grating as stimulus, the luminance profile can
be described mathematically as (see equation (2))

L(r, t) = L0[1 + m cos(kr − ωt + ψ)], (7)

where we have introduced the wavevector k and the angular frequency ω for mathematical
convenience. The wavevector sets the direction and spatial wavelength of the moving grating
and is related to the spatial frequency ν via k = |k| = 2πν. The angular frequency ω is related
to the temporal frequency f via ω = 2π f . By choosing the time t = 0 at an instant where
the luminance profile is L(r) = L0(1 + m cos(kr)), the constant phase factor ψ can be set to
zero, and in the following we set ψ = 0.

Response versus luminance curves for photoreceptors are typically sigmoidal (Leibovic
1990). This relationship will be reflected in the neuronal activity of the retinal ganglion cells.
Following Einevoll and Heggelund (2000) it is convenient to represent the visual stimulus via
an (unspecified) sigmoidal activity function of the luminance L(r), i.e. s(r) = l(L(r)) where l
is a sigmoid of some form (Dayan and Abbott 2001). We choose l(L(r)) to have the dimension
of firing rate, i.e. spikes/s. With this representation, the sigmoidal nonlinearity is shifted to
the input function (stimulus function, s(r)), and the assumption of spatial summation of visual
inputs via the linear impulse–response function Gg(r, t) becomes more plausible. Note that
the linear choice s(r) = L(r) would give the traditional expression in equation (1).

With s(r0, t − τ ) = l(L(r0, t − τ )) inserted into equation (6) the only dependence on
luminance lies in the activity function l(L). The shape of this function can be assessed by
considering the special case with no luminance modulation, i.e. m = 0, which corresponds
to diffuse illumination with the mean luminance L0. For this situation the linear response
corresponds to a response denoted R̂0

g , which according to equation (6) is given by

R̂0
g = l(L0)

∫
τ

∫∫
r0

Gg(r − r0, τ ) d2r0 dτ = l(L0)G̃g(0, 0). (8)

The notation G̃g(0, 0) is used since this constant corresponds to the complex Fourier transform
of Gg(r, t),

G̃g(k, ω) ≡
∫

τ

∫∫
u

e−i(ku−ωτ)Gg(u, τ ) d2u dτ, (9)

for the special case k = 0 and ω = 0. This transform will be used widely in this paper.
Within our model l(L0) = R̂0

g/G̃g(0, 0), and consequently the shape of the function l(L)

will be identical to the shape of the luminance dependence of the ganglion-cell response to
full-field, diffuse illumination (m = 0), only scaled by the constant factor G̃g(0, 0). In a linear
system this full-field illumination response can also be obtained by temporal averaging of a
drifting-grating response (m �= 0) over an integer number of oscillatory periods.

Schematic illustrations of monotonically increasing l(L), applicable to ON-centre cells,
and monotonically decreasing l(L), applicable to OFF-centre cells, are shown in figure 2.
The function l(L) incorporates the photoreceptor response, which strongly adapts to the level
of diffuse illumination (Leibovic 1990), and l(L) will adapt correspondingly. In the present
modelling we will, however, assume that the shape of l(L) is constant during the recording of
an experimental data set.

The function l(L) is nonlinear, but for small luminance contrasts m, l(L) can be
approximated by the two first terms in a Taylor expansion around the mean luminance L0,
i.e.

l(L(r, t)) ≈ l(L0) + L0l ′(L0)m cos(kr − ωt). (10)

This linearization is illustrated in figure 2.
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Figure 2. Schematic illustration of possible shapes of activity functions l(L) as functions of
luminance L for ON-centre (——) and OFF-centre (- - - -) cells. L0 denotes a mean luminance
of a drifting-grating stimulus. Dotted lines illustrate the linear approximation around L0 given by
equation (10).

The ganglion-cell response is then given by

R̂g(r, t) ≈
∫

τ

∫∫
r0

Gg(r − r0, τ )[l(L0) + L0l ′(L0)m cos(kr0 − ω(t − τ ))] d2r0 dτ

= l(L0)G̃g(0, 0) + L0l ′(L0)m
∫

τ

∫∫
r0

Gg(r − r0, τ )

× cos(kr0 − ω(t − τ )) d2r0 dτ. (11)

We now use the standard mathematical trick of replacing the real function cos(kr0 −ω(t −τ ))

with the complex quantity exp(ikr0 − iω(t − τ )) and, correspondingly, the real response
function R̂g(r, t) with the corresponding complex quantity Rg(r, t). These are related via
R̂g(r, t) = Re{Rg(r, t)} where Re{z} represents the real part of the complex number z. By
introducing the auxiliary variable u = r − r0 we find

Rg(r, t) = l(L0)G̃g(0, 0) + L0l ′(L0)m
∫

τ

∫∫
r0

Gg(r − r0, τ )ei(kr0−ω(t−τ)) d2r0 dτ

= l(L0)G̃g(0, 0) + L0l ′(L0)mei(kr−ωt)
∫

τ

∫∫
u

Gg(u, τ )e−i(ku−ωτ) d2u dτ

= l(L0)G̃g(0, 0) + L0l ′(L0)mG̃g(k, ω)ei(kr−ωt)

= l(L0)G̃g(0, 0) + L0l ′(L0)m|G̃g(k, ω)|ei(kr−ωt+�g), (12)

where we have used the general relationship G̃g(k, ω) = |G̃g(k, ω)|ei�g in the final step. The
real-valued ganglion-cell response is thus given by

R̂g(r, t) = Re{Rg(r, t)} = l(L0)G̃g(0, 0) + L0l ′(L0)m|G̃g(k, ω)| cos(kr − ωt + �g), (13)

which is of the same form as equation (3), except for the inclusion of the phase shift �g.
However, in our reformulation the term L0C(ν) in equation (3) is replaced by the product
L0l ′(L0)|G̃g(k, ω)|, commonly referred to as the contrast gain (Watson 1992). The constant
mean-activity term is now specified in terms of the activity function l(L0) and the spatially and
temporally summated impulse–response function G̃g(0, 0). Note that ON- and OFF-cells will
have l ′(L0) of opposite signs (see figure 2) which means that their sinusoidal responses will
be approximately 180◦ out of phase (provided that their phase shifts �g are not too different).
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Figure 3. Schematic view of the geniculate circuit for the X pathway. The neurons involved
are retinal ganglion cells (g), geniculate relay cells (r), intrageniculate interneurons (i), thalamic
reticular cells (t), and cortical cells (c). The excitatory connections are shown as solid curves while
the inhibitory connections are shown with dashed curves. In addition the geniculate and thalamic
reticular cells receive inputs from the brainstem reticular formation (BRF).

3.2. Relay-cell response functions

The corresponding descriptive-model dLGN relay cell response to drifting gratings is, in
analogy with equation (12), given by

Rr(r, t) = l(L0)G̃r(0, 0) + L0l ′(L0)mG̃r(k, ω)ei(kr−ωt), (14)

where G̃r(k, ω) is the Fourier transform of the spatio-temporal relay cell impulse–response
function Gr(r, t). The form of Gr(r, t) will depend on the properties of both the retinal and
the geniculate circuit.

Our strategy for the mechanistic modelling is to construct the relay cell impulse–response
function G̃r(k, ω) based on current knowledge about the pattern of functional neuronal
couplings in dLGN (reviewed by Sherman and Guillery 2001). Relay cells receive excitatory
input from retinal ganglion cells as well as feedforward inhibition from intrageniculate
interneurons both via dendro-dendritic structures (triads) and (possibly) axonal output. The
interneurons in turn receive excitation from a few retinal ganglion cells. In addition, the relay
cells receive inhibitory feedback from the TRN and excitatory feedback from the striate cortex.
The intrageniculate interneurons and TRN cells also receive excitatory feedback from cortex.
All these feedforward and feedback connections will eventually be included in our present
mathematical treatment. A schematic view of the circuit is given in figure 3.

3.2.1. Feedforward excitation only. To illustrate the mathematical technique used in this
paper more clearly, we first consider a severely simplified model of the geniculate X pathway
including only the feedforward excitatory afferents to dLGN relay cells. We assume that
the X-type relay cells receive all their feedforward inputs from X-type retinal ganglion cells
belonging to the same symmetry class, i.e. only ON-symmetry or only OFF-symmetry inputs
(Cleland et al 1971, Coenen and Vendrik 1972, Dubin and Cleland 1977, Cleland and Lee
1985, Mastronarde 1987a, 1987b, 1992). The ON- and OFF-channels are thus decoupled and
can be treated separately.
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Assuming linearity and time-invariance for the feedforward excitatory couplings between
retinal ganglion cells and relay cells, the relay cell response can be written as

Rr(r, t) =
∫

τ

∫∫
r0

Krg(r − r0, τ )Rg(r0, t − τ ) d2r0 dτ, (15)

where Krg(r − r0, τ ) is the spatio-temporal retino-geniculate coupling function (coupling
kernel) between a retinal ganglion cell at a position r0 and a relay cell at r.

The expression in equation (15) is analogous to the expression in equation (6) with
Rg(r0, t − τ ) now corresponding to the ‘stimulus’ and Krg(r −r0, τ ) to the impulse–response
function. An essential assumption underlying equation (15) is the assumption of spatial
homogeneity, i.e. that

(i) all retinal ganglion cells coupled to a relay cell (when more than one) have the same
response properties, and

(ii) the corresponding coupling function Krg depends only on the relative distance between
these cells.

Insertion of equation (12) into (15) yields

Rr(r, t) =
∫

τ

∫∫
r0

Krg(r − r0, τ )l(L0)G̃g(0, 0) d2r0 dτ

+
∫

τ

∫∫
r0

Krg(r − r0, τ )L0l ′(L0)mG̃g(k, ω)ei(kr0−ω(t−τ)) d2r0 dτ

= l(L0)K̃rg(0, 0)G̃g(0, 0) + L0l ′(L0)mK̃rg(k, ω)G̃g(k, ω)ei(kr−ωt). (16)

We now have two mathematical expressions for Rr(r, t), the traditional descriptive one
in equation (14) and our new mechanistic one (16). By comparing these expressions we can
immediately identify G̃r(0, 0) = K̃rg(0, 0)G̃g(0, 0), and the more general relationship

G̃r(k, ω) = K̃rg(k, ω)G̃g(k, ω). (17)

A crucial observation here is that while the drifting-grating response for a relay cell
(i.e. the contrast gain) naturally depends on the corresponding response of the retinal ganglion
cells feeding into the relay cell, the ratio between the harmonically modulated components,
T̃rg(k, ω), only depends on the retino-geniculate coupling function K̃rg, i.e.

T̃rg(k, ω) ≡ L0l ′(L0)mG̃r(k, ω)

L0l ′(L0)mG̃g(k, ω)
= K̃rg(k, ω)G̃g(k, ω)

G̃g(k, ω)
= K̃rg(k, ω). (18)

Watson (1992) used the term level transfer function for a ratio of this type. Here we will
call T̃rg(k, ω) the geniculate transfer function, and the magnitude |T̃rg(k, ω)| the geniculate
transfer ratio. The geniculate transfer ratio is given by |T̃rg(k, ω)| = |K̃rg(k, ω)|, and
the difference in phase between the relay cell and ganglion-cell responses is given by
�r − �g = �rg = arg T̃rg(k, ω) = arg K̃rg(k, ω). Similarly, the ratio of the mean responses
is found also to be provided by equation (18) for the special case k = 0, ω = 0, i.e.
T̃ 0

rg = K̃rg(0, 0).
The observed independence of the geniculate transfer function from the response of the

retinal ganglion cell applies to arbitrarily complex model circuits as long as the coupling
functions are linear and spatially homogeneous. It should also be noted that the geniculate
transfer function is independent of the mean luminance L0 as well as of the shape of the activity
function l(L0) within our model.
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3.2.2. Feedforward excitation and inhibition. In addition to feedforward excitatory retinal
afferents, the relay cells also receive feedforward inhibition from intrageniculate interneurons
which in turn receive excitation from a few retinal ganglion cells (Dubin and Cleland 1977,
Mastronarde 1992). As for X-type relay cells we assume that the (X-type) interneurons receive
feedforward inputs from X-type retinal ganglion cells of the same symmetry class only. We
further assume that the relay cells receive feedforward inhibition from interneurons of the same
symmetry class, so that X-ON and X-OFF channels still can be treated independently.

In a linear model the response of an intrageniculate cell to sinusoidal drifting gratings can,
in analogy with equation (14), be written as

Ri(r, t) = l(L0)G̃ i(0, 0) + L0l ′(L0)mG̃ i(k, ω)ei(kr−ωt). (19)

In analogy with equation (15) we also have

Ri(r, t) =
∫

τ

∫∫
r0

Kig(r − r0, τ )Rg(r0, t − τ ) d2r0 dτ

= l(L0)K̃ig(0, 0)G̃g(0, 0) + L0l ′(L0)mK̃ig(k, ω)G̃g(k, ω)ei(kr−ωt), (20)

and comparing with equation (19) we thus identify G̃ i(k, ω) = K̃ig(k, ω)G̃g(k, ω). The relay
cell response is now given by

Rr(r, t) =
∫

τ

∫∫
r0

[Krg(r − r0, τ )Rg(r0, t − τ ) + Kri(r − r0, τ )Ri(r0, t − τ )] d2r0 dτ

= l(L0)[K̃rg(0, 0)G̃g(0, 0) + K̃ri(0, 0)K̃ig(0, 0)G̃g(0, 0)]

+ L0l ′(L0)m[K̃rg(k, ω)G̃g(k, ω) + K̃ri(k, ω)K̃ig(k, ω)G̃g(k, ω)]ei(kr−ωt)

= l(L0)G̃r(0, 0) + L0l ′(L0)mG̃r(k, ω)ei(kr−ωt), (21)

where we have used equations (14) and (19). The structure of the feedforward retino-geniculate
model circuit is as sketched in figure 4, if TRN and all connections to and from it were removed
from the diagram.

Comparing the terms in the last two equations in equation (21) we find

G̃r(k, ω) = G̃g(k, ω)[K̃rg(k, ω) + K̃ri(k, ω)K̃ig(k, ω)]. (22)

The geniculate transfer function is thus given by

T̃rg(k, ω) = K̃rg(k, ω) + K̃ri(k, ω)K̃ig(k, ω), (23)

which still is independent of the response of the retinal ganglion cell.
Equation (23) nicely exposes the beauty of linear systems theory. The geniculate transfer

function T̃rg(k, ω), which describes the joint effect of feedforward excitation (first term on the
right-hand side of the equation) and indirect feedforward inhibition (second term), is obtained
by simply adding the response kernels for the two parallel pathways. The response kernel for
the successive effect of excitatory coupling from retina to interneuron, followed by inhibitory
coupling of the interneuron to the relay cell, is obtained by multiplying the two pertaining
response kernels in Fourier space.

The result in equation (22) could indeed have been written down at once using standard
methods of filter theory, observing that:

(i) there are two parallel paths to the relay cells from the ganglion cells, and
(ii) the parallel path via the interneuron involves a series of two ‘filters’.

More information about filter theory can be found in, for example, the textbooks of Oppenheim
and Willsky (1997) and Marmarelis and Marmarelis (1977).
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Figure 4. Illustration of mathematical structure of geniculate circuit model including feedforward
connections and feedback from TRN. Rg, Rr , Ri , and Rt represent the responses of retinal ganglion
cells, relay cells, intrageniculate interneurons, and reticular cells. Krg, Kig, Kri, Ktr , Krt , and Ktt
represent coupling functions as described in the text. The excitatory connections are shown as solid
lines while the inhibitory connections are shown with dashed lines.

3.2.3. Feedback from thalamic reticular nucleus. On the way to cortex the relay cell axons
send out lateral arborizations which provide retinotopic excitation of the TRN. These inhibitory
cells have retinotopic connections with relay cells as well as lateral inhibitory connections with
other reticular (TRN) cells. The separation of the X and Y pathway appears to hold also for
reticular cells (Lindström and Wróbel 1990), whence we neglect any influence from the Y
pathway in the present X-pathway model. However, the reticular cells exhibit mixed ON–OFF
response (Ahlsén et al 1983, Dubin and Cleland 1977, Funke and Eysel 1998) and presumably
receive inputs from both relay ON-cells and relay OFF-cells (Ahlsén et al 1983).

Below we describe the outcome of the derivation of an expression for the geniculate
transfer ratio for X-ON cells, an expression which is straightforwardly modified to obtain
the corresponding ratio for X-OFF cells. A complete mathematical derivation is given in
appendix A.

Since the TRN cells receive mixed ON and OFF inputs, their response is affected by
both the functions lON(L0) and lOFF(L0), see figure 2. With our focus on the ON-ratio, it
is mathematically convenient to write the descriptive expression for a TRN cell to drifting
gratings, in analogy with equation (14), as

Rt(r, t) = lON(L0)G̃ t(0, 0) + L0l ′ON(L0)mG̃ t(k, ω)ei(kr−ωt). (24)

In analogy with equation (15) we now have

Rt(r, t) =
∫

τ

∫∫
r0

[K ON
tr (r − r0, τ )RON

r (r0, t − τ ) + K OFF
tr (r − r0, τ )ROFF

r (r0, t − τ )

+ Ktt(r − r0, τ )Rt(r0, t − τ )] d2r0 dτ. (25)

Here K ON
tr (r − r0, τ ) (K OFF

tr (r − r0, τ )) is the spatio-temporal coupling function describing
the excitatory influence of a relay ON-cell (OFF-cell) on a TRN cell, and Ktt(r − r0, τ ) is
correspondingly describing the coupling function between two TRN cells, cf figure 4.
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We now make the assumption that the ON- and OFF-channels are identical except for
the difference in the functions lOFF(L0) and lON(L0). Mathematically this corresponds to
K̃ ON

tr (k, ω) = K̃ OFF
tr (k, ω) ≡ K̃tr(k, ω) and G̃ON

r (k, ω) = G̃OFF
r (k, ω) ≡ G̃r(k, ω). This

assumption also implies that Gg, Krg, Kri, and Krg are the same for the two channels.
Mathematical analysis then yields the following for the Fourier-transformed impulse–

response functions of the TRN cells:

G̃ t(0, 0) = K̃tr(0, 0)G̃r(0, 0)[1 + c0(L0)]

1 − K̃tt(0, 0)
,

G̃ t(k, ω) = K̃tr(k, ω)G̃r(k, ω)[1 − c1(L0)]

1 − K̃tt(k, ω)
, [k, ω] �= [0, 0], (26)

where we have introduced the functions

c0(L0) ≡ lOFF(L0)/ lON(L0), c1(L0) ≡ −l ′OFF(L0)/ l ′ON(L0). (27)

Here we see that due to the mixing of the ON- and OFF-channels, the quantities G̃ t(0, 0)

and G̃ t(k, ω) depend on the luminance L0 via the functions c0(L0) and c1(L0), respectively.
We note in passing that since the ON- and OFF-channels are approximately 180◦ out of phase,
the sinusoidally modulated inputs to reticular cells from the relay ON- and OFF-cells will tend
to cancel each other. This follows from the fact that l ′(L0) of the ON- and OFF-channels have
opposite signs, as seen in figure 2. In fact, if l ′OFF(L0) = −l ′ON(L0), so that c1(L0) = 1, the
reticular cells will receive no modulated input at all; the modulation of their response should
then vanish as well, even if the cells operate quite nonlinearly in general.

Note that the division by 1 − K̃tt(k, ω) in equation (26) is another standard result of linear
filter theory: feedback loops have a divisive effect and can give rise to singularities in the
response and transfer functions, i.e. can show resonances.

The retino-geniculate transfer function in the presence of reticular feedback can now be
derived by similar reasoning as applied in the previous sections. We therefore refer the reader
to appendix A for details and give here merely the results. The retino-geniculate transfer
function for the modulated response is given by

T̃rg(k, ω; L0) = K̃rg(k, ω) + K̃ri(k, ω)K̃ig(k, ω)

1 − K̃rt(k,ω)K̃tr(k,ω)[1−c1(L0)]
1−K̃tt(k,ω)

. (28)

Note that in contrast to the geniculate transfer function for the feedforward model in
equation (23), this transfer functions depends on the mean luminance L0 via the function
c1(L0). This reflects that the modulatory drives, l ′(L0), to the ON- and OFF-channels in the
circuit will vary with the luminance as illustrated in figure 2.

Correspondingly, the transfer ratio for the mean response is given by

T̃rg(0, 0; L0) = K̃rg(0, 0) + K̃ri(0, 0)K̃ig(0, 0)

1 − K̃rt(0,0)K̃tr(0,0)[1+c0(L0)]
1−K̃tt(0,0)

, (29)

which also depends on the mean luminance via the function c0(L0). Note that all quantities in
this equation are real.

The transfer function for the modulated response in equation (28) no longer becomes
identical to the mean-response transfer ratio in equation (29) in the limit k → 0, ω → 0, due
to the mixing of ON- and OFF-channels via feedback from reticular cells.
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Figure 5. Schematic illustration of the model geniculate circuit. Rg, Rr , Ri , Rt , and Rc represent
the responses of retinal ganglion cells, relay cells, interneurons, reticular cells, and cortical cells,
respectively. Kmn(m, n = g, i, r, t, c) represents the coupling from neurons of type n on neurons
of type m as described in the text. K ∗

tr represents the accumulated effect of input to reticular cells
from both relay ON and relay OFF cells (see figure 4 and text). Excitatory connections are shown
as solid lines while the inhibitory connections are shown with dashed lines.

3.2.4. Extended geniculate circuit. Relay cells, intrageniculate interneurons and TRN cells
receive excitatory afferents from layer VI of the striate cortex. These cortical projections are,
in the anatomical sense at least, the major input to the dLGN and are broadly retinotopically
organized (Sillito and Jones 1997). The present modelling approach can also be extended
to include the effect from cortical feedback. However, the output from these layer VI cells
is a result of complex cortical processing of the geniculate inputs, and the effect of cortical
feedback must be incorporated in a descriptive manner. An additional complication is that the
cortical cells in layer VI have orientation-tuned receptive fields. A natural approach could thus
be to include a set of different cortical neuronal populations in our model, each representing
neurons tuned to a particular orientation. Then, depending on the orientation of the drifting
grating, a subset of these neuronal populations would be activated. Instead we will lump all
these populations into a single cortical neuronal population without orientation specificity.

For the extended geniculate circuit including all feedforward and feedback afferents shown
in figure 5, we show in Appendix B that the geniculate transfer function in our linear model is
given by

T̃rg(k, ω; L0) =
K̃rg(k, ω) + K̃ri(k, ω)K̃ig(k, ω)

1− K̃rc(k, ω)K̃cr(k, ω)− K̃ri(k, ω)K̃ic(k, ω)K̃cr(k, ω)− K̃rt(k,ω)K̃ ∗
tr(k,ω;L0)+K̃rt(k,ω)K̃tc(k,ω)K̃cr(k,ω)

1−K̃tt(k,ω)

(30)

where the symbols are explained in figure 5. Here we have introduced the shorthand notation
K̃ ∗

tr(k, ω; L0) ≡ K̃tr(k, ω)[1−c1(L0)]. The transfer function depends on the mean luminance
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L0 due to the mixed ON–OFF input to reticular cells. Such mixing is also expected to be
induced by the cortical feedback, even if this luminance dependence is not stated explicitly in
the expression. Only if feedback is neglected is the transfer function expected to be independent
of both the mean luminance and the shape of the activity function l(L0).

The transfer ratio for the mean response T̃rg(0, 0; L0) has identical form with the
geniculate transfer function in equation (30) with [0, 0] replacing [k, ω] and K̃ ∗

tr(0, 0; L0) ≡
K̃tr(0, 0)[1 + c0(L0)].

Even if the final expression for the geniculate transfer function in equation (30) is
quite extended, it has a simple structure. The direct feedforward excitation and the indirect
feedforward inhibition via interneurons are represented by the first and second terms in the
numerator, respectively. The feedback effects are accounted for in the denominator. Here the
second term accounts for the direct excitatory feedback loop between relay cells and cortex,
the third term for inhibition via the relay–cortex–interneuron–relay loop, and the fourth term
for feedback effects mediated by TRN cells.

4. Example applications

The previous section provides the necessary theoretical framework for probing the retino-
geniculate circuitry by applying data from traditional experiments with drifting sinusoidal
gratings. When combined with mechanistic model expressions for the coupling functions
K (r, t), the general transfer-function expression in equation (30) (or reduced versions of it)
gives mechanistic expressions for the geniculate transfer ratio. These theoretical transfer ratios
can then be compared with experimental data.

4.1. Spatial transfer

To illustrate how the method can be used to probe the spatial properties we will consider data
reported by Cheng et al (1995, figure 2) for an X relay cell in cat. The experimental data for the
first-harmonic responses of relay cells (action potentials) and their retinal input (S-potentials)
are shown in figure 1(a). The standard descriptive way to analyse such data has been outlined
in section 2. The alternative method suggested by the present theoretical work is to

(i) replot the experimental data to provide spatial frequency curves for the geniculate transfer
ratio, and

(ii) fit this curve to the relevant theoretical expressions.

The spatial frequency tuning curve for the geniculate transfer ratio, i.e. ratio between amplitudes
of the modulated relay cell and retinal input responses, for the response data in figure 1(a) is
shown in figure 1(b).

4.1.1. Feedforward excitation and inhibition. As a first example we consider the feedforward
circuit where the feedback from the TRN and cortical cells are neglected, i.e. Krt = Krc =
Kit = Kic = 0. Relay cells receive excitatory input from a single or a few retinal ganglion cells
(Cleland et al 1971, Coenen and Vendrik 1972, Cleland and Lee 1985, Mastronarde 1987a,
1987b, 1992). They also receive feedforward inhibition from intrageniculate interneurons
which in turn receive excitation from a few retinal ganglion cells (Dubin and Cleland 1977,
Mastronarde 1992). Following Einevoll and Heggelund (2000) we thus consider a simplified
feedforward circuit model where a relay cell receives

(i) direct excitation from a single retinal ganglion cell, and
(ii) indirect feedforward inhibition from several retinal ganglion cells via intrageniculate

interneurons.
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Figure 6. (a) Schematic illustration of couplings at the geniculate level assumed in the discrete
model with a single excitatory input with weight B1 and five inputs to a single interneuron (i).
The five (indirect) inhibitory couplings between retinal ganglion (g) and relay cells (r) are each
assumed to have weight B2. (b) Illustration of model for spatial distribution of inputs from retinal
ganglion cells to interneuron. The circles represent the receptive-field centres of the five ganglion
cells providing input to the interneuron.

The relevant geniculate transfer function is thus of the form given by equation (23).
For mathematical simplicity we assume that all the coupling functions are spatio-

temporally separable, i.e. Krg(r, t) = frg(r)hrg(t), Kig(r, t) = fig(r)hig(t), and Kri(r, t) =
fri(r)hri(t), so that K̃ (k, ω) = f̃ (k)h̃(ω). For the same reason we further assume that
h̃ri(ω)h̃ig(ω) ≈ h̃rg(ω) for the relevant temporal frequencies. Throughout this paper we will
choose the temporal coupling functions to be normalized, i.e.

∫ ∞
−∞ h(τ ) dτ = ∫ ∞

0 h(τ ) dτ = 1,
so that the synaptic weight is incorporated in the spatial coupling function f (r).

With these assumptions the geniculate transfer function is found to be

T̃rg(k, ω) = K̃rg(k, ω) + K̃ri(k, ω)K̃ig(k, ω) ≈ [ f̃rg(k) + f̃ri(k) f̃ig(k)]h̃rg(ω). (31)

The separation of T̃rg(k, ω) into a product of two functions depending on k and ω, respectively,
shows that this geniculate transfer function is spatio-temporally separable.

To find the spatial part of the transfer function we must also make specific choices for
the spatial distributions of inputs involved in the indirect feedforward inhibition of relay
cells ( fig(r), fri(r)). Several choices of spatial distributions of feedforward inhibition were
considered by Einevoll and Heggelund (2000) in the modelling of responses to flashing circular
spots. However, the main focus was on a discrete model with a finite number of retinal ganglion-
cell inputs to the dLGN interneurons. This model assumed that

(i) the retinal ganglion cell which provides the excitatory input (with weight B1) to the relay
cell is also functionally coupled to an interneuron providing inhibition on the same relay
cell,

(ii) four ‘neighbouring’ ganglion cells, all with receptive fields centred at the same distance
ra from the relay cell receptive-field centre, also give direct excitatory input to this
interneuron, and

(iii) the five excitatory inputs to the interneuron have the same strength.

This discrete model is illustrated in figure 6.
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For this model the geniculate transfer function for gratings moving along any of the major
axes (x or y, see figure 6(b)) is found to be

T̃rg(k, ω) = [ f̃rg(k) + f̃ri(k) f̃ig(k)] h̃rg(ω)

= h̃rg(ω)

∫∫
r

e−ikr

[
B1δ(r) − B2

5∑
j=1

δ(r−r j)

]
d2r

= h̃rg(ω)[B1 − B2(3 + 2 cos(kra))], (32)

where k = |k|, and the sum goes over all the five retinal inputs to the interneuron illustrated in
figure 6. δ(r) is the Dirac delta function, and we have used that the Fourier transform of this
function is 1.

The experimentally accessible geniculate transfer ratio is given by the amplitude of
T̃rg(k, ω). The data of Cheng et al (1995) plotted in figure 1 are taken for a fixed temporal
frequency, i.e. a fixed f = f0 (where f = ω/2π). Thus the amplitude of the temporal
part of the geniculate transfer function gives a fixed positive constant Bt ≡ |h̃rg(2π f0)|. The
wavevector k is related to the spatial frequency ν used in figure 1 via k = |k| = 2πν. The
theoretical expression for the geniculate transfer ratio to compare with the data in figure 1(b)
is thus

|T̃rg(ν, f0)| = Bff [1 − ηff(3 + 2 cos(2πνra))] (33)

where we have introduced the new parameters Bff ≡ Bt B1 and ηff ≡ B2/B1. We have also
assumed ηff < 1, i.e. the overall geniculate inhibition is weaker than the excitation. We see
that this model, with its (unrealistic) perfectly symmetric spatial distribution of interneuron
inputs, predicts an oscillatory geniculate transfer ratio as function of spatial frequency.

The resulting fit with the present example data from Cheng et al (1995, figure 2) is shown
in figure 1(b) (solid curve). Fitted parameter values are given in the figure caption. As seen
in figure 1(b) the best fit of this discrete feedforward model shows poor agreement with the
present example data.

In Kocbach et al (2001) other models for feedforward inhibition have been explored,
among them a continuous feedforward Gaussian model for the inhibition. Mathematically
this corresponds to a total feedforward spatial coupling given by f (r) = B1δ(r) −
B2 exp(−r2/b2

2)/(πb2
2). Then in analogy to equation (33) one finds for the geniculate transfer

ratio for all directions of k:

|T̃rg(ν, f0)| = |h̃rg(2π f0)||B1 − B2e−π2ν2 b2
2 | = Bff [1 − ηff e−π2ν2b2

2 ]. (34)

As shown in figure 1(b) (dashed curve) this model gives a reasonably good fit to the example
data from Cheng et al (1995, figure 2).

4.1.2. Feedback inhibition. There are several possible channels for feedback inhibition of
relay cells in the retino-geniculate circuit shown in figure 3. One possibility is the feedback
loop in which relay cells excite reticular (TRN) cells, which in turn inhibit the relay cells
(Lo and Sherman 1994). Another possibility is the cortical feedback excitation of interneurons
(alternatively, reticular cells) which in turn results in increased inhibitory action on the relay
cells. This latter effect has been clearly observed in drifting-grating experiments, as reviewed
by Sillito and Jones (1997). We will here consider the inhibitory cortical-feedback channel via
interneurons and neglect the reticular cells in the following example. To make the mathematical
derivations more transparent we will also for simplicity neglect

(i) the cortical feedback excitation of relay cells, i.e. Krc = 0, and
(ii) the feedforward inhibition modelled in the previous section, i.e, Kig = 0.
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This model thus focuses on the effects on the shape of the difference in spatial tuning curves
between the retinal and geniculate levels on the basis of cortical feedback inhibition on relay
cells mediated by interneurons.

For this example model, the general expression for the geniculate transfer function in
equation (30) reduces to

T̃rg(k, ω) = K̃rg(k, ω)

1 − K̃ri(k, ω)K̃ic(k, ω)K̃cr(k, ω)
. (35)

For the sake of mathematical simplicity we further assume that the coupling functions Kcr, Kic,
and Kri are spatio-temporally separable, i.e. Kcr(r, t) = fcr(r)hcr(t), Kic(r, t) = fic(r)hic(t),
and Kri(r, t) = fri(r)hri(t).

We then find

T̃rg(k, ω) ≈ B1h̃rg(ω)

1 − f̃ri(k) f̃ic(k) f̃cr(k)h̃ri(ω)h̃ic(ω)h̃cr(ω)
, (36)

where B1 still is the weight of the single excitatory retinal afferent.
Since T̃rg(k, ω) in this expression obviously cannot be written as a product of a function ofk

with a function of ω, one immediately sees that even with spatio-temporally separable coupling
functions, the geniculate transfer function will be spatio-temporally coupled. Consequently, the
relay cell response will also be spatio-temporally coupled since R̃r(k, ω) = T̃rg(k, ω)R̃g(k, ω).
This conclusion will hold for all geniculate models incorporating feedback.

A mathematically convenient assumption is to model the spatial coupling functions as
Gaussians, i.e.

fcr(r) = Dcr

πd2
cr

e−r2/d2
cr , fic(r) = Dic

πd2
ic

e−r2/d2
ic, fri(r) = − Dri

πd2
ri

e−r2/d2
ri , (37)

so that

f̃cr(k) = Dcre−k2d2
cr/4, f̃ic(k) = Dice−k2 d2

ic/4, f̃ri(k) = −Drie−k2 d2
ri/4. (38)

Here the weight parameters Dcr, Dic and Dri are assumed positive, and the negative sign in
fri , the spatial coupling function from interneurons to relay cells, follows from the inhibitory
effect on the relay cells from these cells. The geniculate transfer function is then given by

T̃rg(k, ω) = B1h̃rg(ω)

1 + Dri Dic Dcre−k2(d2
ri+d2

ic+d2
cr)/4h̃ir(ω)h̃ic(ω)h̃cr(ω)

. (39)

The temporal part of the coupling function between ganglion and relay cells in the numerator
of equation (39) will only give the multiplicative factor |h̃rg(ω)| in the model expression for the
geniculate transfer ratio. However, since h(ω) in general is a complex number, the temporal
functions in the denominator will not generally factor out in a simple way as in the feedforward
case.

In the experiments of Cheng et al (1995) the temporal frequency was kept fixed at
f0 = 3.1 Hz which corresponds to an angular frequency of ω0 = 2π f0 = 20 s−1. The axonal
delays, membrane constants and durations of EPSPs and IPSPs in the circuit are typically less
than 10 ms (although the presence of metabotropic receptors indicates that there are exceptions,
see Sherman and Guillery (2001)). For temporal coupling functions which are non-negligible
only for small time windows around 0 we find

h̃(ω0) =
∫ ∞

−∞
eiω0τ h(τ ) dτ ≈

∫ ∞

−∞
h(τ ) dτ = 1. (40)
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Here we have assumed that exp(iω0τ) ≈ 1 + iω0τ ≈ 1 and used that h(t) is normalized. For a
typical temporal width of h(t) of 5 ms, the approximation error is of the order of ω0τ ≈ 0.1.

With these simplifications the geniculate transfer ratio for our feedback model, which
should be compared with the example data in figure 1(b), is given by

|T̃rg(ν, f0)| =
∣∣∣∣ B1h̃rg(2π f0)

1 + Dri Dic Dcre−π2ν2(d2
ri+d2

ic+d2
cr)

∣∣∣∣ = Bfb

1 + Dfbe−π2ν2d2
fb

, (41)

where we have introduced the new parameters Bfb ≡ B1|h̃rg(2π f0)|, Dfb ≡ Dri Dic Dcr, and
dfb ≡ (d2

ri + d2
ic + d2

cr)
1/2. The three parameters Bfb, Dfb, and dfb can for our example data

be determined by fitting this theoretical function to the data points in figure 1(b) as in the
previous feedforward cases. The resulting best fit is shown in this figure as a dotted line with
the optimal parameters listed in the figure caption. As seen here the best fit for the feedback
model is equally good as the continuous feedforward model, and significantly better than for
our discrete feedforward model. The number of fitting parameters is three in all cases.

4.2. Spatio-temporal transfer

Our approach is not limited to testing against drifting-grating data where only the spatial
frequency of the grating is varied while the temporal frequency is fixed. Alternatively, we can
consider the opposite case where the spatial frequency is fixed while the temporal frequency
is varied. Ideally, though, the transfer ratio should be measured as a function of both spatial
and temporal frequencies.

To test our modelling approach against such data we need model expressions for the
temporal coupling kernels h(t). The simplest choice is a delayed Dirac delta function,
h(t) = δ(t − 	), which corresponds to a combined axonal and synaptic delay of 	 without
any temporal dispersion.

A more realistic model is the delayed exponential coupling kernel (delayed RC filter)
which, properly normalized to 1, is given by

h RC(t) = 
(t − 	)
1

τ
e−(t−	)/τ , (42)

where 
(t) is the Heaviside unit step function. The Fourier transform of this kernel is

h̃ RC(ω) =
∫ ∞

−∞
h RC(τ )eiωτ dτ = ei	ω

1 − iτω
. (43)

To illustrate how feedforward and feedback connections may reveal themselves in the
transfer ratio, we show in figure 7 contour plots of the transfer ratio as function of both the spatial
and temporal grating frequencies for the delayed exponential model. For the feedforward case
we use the Gaussian-inhibition model as spatial kernel,whence the transfer function is obtained
by combining equations (34) and (43):

T̃rg(ν, f ) = Bffei2π	 f

1 − i2πτ f
(1 − ηff e

−π2ν2b2
2), (44)

where we use the temporal frequency f instead of the angular frequency ω.
The corresponding expression for a system with feedback is obtained by

(i) assuming h̃ri(ω)h̃ic(ω)h̃cr(ω) = h̃ RC(ω) and
(ii) neglecting the feedforward temporal coupling term h̃rg(ω) in equation (36).
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Figure 7. Retino-geniculate transfer ratio (left column) and phase shift (right column), as functions
of both spatial and temporal grating frequencies. (a), (b) Feedforward model with continuous
Gaussian inhibition, equation (44). Temporal parameters: 	 = 2 ms, τ = 5 ms; spatial parameters
as in figure 1. The transfer ratio indicates low-pass temporal and high-pass spatial filtering, with
increasing phase delay for higher temporal frequencies. (c), (d) Feedback model, equation (45).
Temporal parameters: 	 = 10 ms, τ = 5 ms; spatial parameters as in figure 1. The feedback circuit
has a preferred temporal frequency around 35 Hz, and is a spatial low-pass filter for these temporal
frequencies, while operating as a spatial high-pass for lower temporal frequencies. Signals near
the preferred frequency are transmitted without phase delay (horizontal contour line in (d)). (e),
(f) Same as (c), (d), but with tripled inhibitory feedback strength, Dfb = 2.43. The transfer function
now has a resonance at ν∗ ≈ 0.11 cycles/deg, f ∗ ≈ 36.4 Hz: the transfer ratio diverges, and the
phase shift shows a pinwheel structure. Note that contour lines in (e) are spaced logarithmically
for greater clarity, and that the colour axis is truncated.
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One is thus left with

T̃rg(ν, f ) = Bfb

1 + Dfbe−π2ν2d2
fb ei2π	 f /(1 − i2πτ f )

. (45)

For zero temporal frequency, f = 0, these feedforward and feedback expressions reduce to
the corresponding ‘spatial’ transfer ratio expressions in equations (34) and (41), respectively.

Figure 7 shows both the transfer ratio (|T̃ (ν, f )|) and the transfer phase shift (arg T̃ (ν, f ))

for feedforward and feedback cases, using the spatial parameters obtained from fitting the data
by Cheng et al (1995). The best-fit curves from figure 1 thus correspond to the values along
the x-axes ( f = 0) in figures 7(a) and (c).

For the temporal coupling parameters we have set the time constant τ to 5 ms in both the
feedforward and the feedback model. However, while we have chosen a short delay 	 of merely
2 ms for the feedforward case which involves monosynaptic and bisynaptic connections, we
have chosen a longer delay of 10 ms for the feedback case which involves the thalamo-cortical
loop.

As seen from figure 7, the spatiotemporal structure of the transfer ratios and phase shifts are
quite different in the two cases (top and centre row), and this may imply that the relative role of
the feedforward and feedback circuits may be distinguished by performing such experiments.
Note that the purpose of showing these contour plots is merely to illustrate the potential of the
method. The details should not be taken too seriously as, for example, the temporal parameters
have been rather arbitrarily selected.

The bottom row of figure 7 indicates how the system would respond if inhibitory feedback
were very strong (three times as strong as indicated by the fit to the Cheng et al data): the
thalamo-cortical loop shows a resonance in this case, i.e. the system would respond most
vigorously to a properly chosen grating. The conditions for the existence of a resonance,
as well as the location of the latter, can be obtained as follows. A resonance occurs for ν–
f -combinations for which the denominator in (45) vanishes. Solving for ν assuming that
Dfb > 0, and requiring that ν must be a real number, one arrives at the following conditions:

2π f τ �
√

D2
fb − 1

2π f 	 + arctan 2π f τ = (2n + 1)π, n ∈ Z. (46)

If the first condition is fulfilled, and the latter equation has a real solution f ∗, then the pertaining
spatial frequency is given by

ν∗ = 1√
2πdfb

√
ln

D2
fb

1 + 4π2 f ∗2τ 2
. (47)

The existence of a singular point as seen in figures 7(e), (f) requires a transfer function
which is not spatio-temporally separable. Clearly, if the spatial or temporal kernel diverges in
a spatio-temporally separable transfer function, one would see a resonance ‘line’ in contour
plots of the type shown in figure 7, not a resonance point.

5. Discussion

5.1. Linearity assumption

The modelling presented in this paper is based on linear theory. Thus, the feedforward coupling
functions (coupling kernels) between retina and dLGN, and all the feedforward and feedback
coupling functions between and within dLGN, TRN, and cortex illustrated in figure 5 are
assumed to be linear. The feedback to relay cells from cortex and TRN will in general involve
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nonlinear as well as linear effects (Sherman and Guillery 2001), whence we do not expect
our approach to account for all behaviour of the retino-geniculate circuit. Instead it should be
considered a linear, and thus readily analysable, entry point into mechanistic modelling of the
geniculate circuit.

Given that the X pathway has been found to respond approximately linearly when driven
by drifting-grating stimuli (So and Shapley 1981, Cheng et al 1995), our formalism should
nevertheless be suitable for analysis of this pathway, at least under low-contrast conditions.
It has further been demonstrated clearly that cortico-geniculate feedback affects the first-
harmonic component of the relay cell response (Sillito and Jones 1997), indicating that the
cortico-geniculate influence must have a significant linear component.

In burst mode (Sherman and Guillery 2001) the relay cells exhibit nonlinear behaviour due
to low-threshold calcium spiking. Guido et al (1992) measured the linearity for a population
of relay cells for lightly anesthetized cats both in their burst and tonic modes. In drifting-
grating experiments the linear (first-harmonic) component was generally found to dominate the
nonlinear (higher-order) components for cells in tonic mode, while the opposite was observed
in burst mode. We thus expect our formalism to be best suited for cells in tonic mode, which
appears to be the dominant mode in awake, attentive animals (Livingstone and Hubel 1981).

In other experiments the first-harmonic component of the X relay cell responses has been
found to be much stronger than higher-order components, at least for low to moderate contrasts
(So and Shapley 1981,Cheng et al 1995). This might indicate that the relay cells predominantly
have been in tonic mode during their experiments.

We have developed this linear model with the X pathway in mind since this pathway
exhibits rather linear response characteristics. Nonlinear characteristics of the Y pathway are
already present at the retinal level, as demonstrated by large second-order Fourier components
for Y retinal ganglion cells in drifting-grating experiments (Enroth-Cugell and Robson 1966,
Hochstein and Shapley 1976). Note, however, that presence of second- or higher-order
components in the relay cell responses (X or Y) does not in itself prove that the geniculate
transfer function is nonlinear. Such higher-order components might in principle arise in the
retina and be transferred linearly through dLGN. If so, it would be possible to measure the
geniculate transfer function for each component separately and compare each component with
the present linear expressions.

5.2. Assumption of spatial homogeneity

An assumption inherent throughout the mathematical analysis presented here is the assumption
of spatial homogeneity, i.e. that all neurons at one level are alike except for the spatial location
of their receptive field. This is expected to be a good approximation when the relevant neuronal
populations are taken from a local region of the visual field. This criterion seems to be well
satisfied by the feedforward coupling between retina and dLGN (Cleland et al1971, Coenen and
Vendrik 1972, Cleland and Lee 1985, Mastronarde 1987a, 1987b, 1992), while it is presently
less certain for the connections involving TRN and cortex.

5.3. Feedback and spatio-temporal separability

Conflicting results have appeared in the literature on the question of spatio-temporal
separability of the relay cell receptive field. Using sinusoidal grating patterns Enroth-Cugell
et al (1983) and Dawis et al (1984) concluded that responses in cat retinal ganglion cells and
dLGN relay cells are spatio-temporally coupled (i.e. not spatio-temporally separable) under
these conditions. In white noise measurements DeAngelis et al (1995) and Wolfe and Palmer
(1998) found relay cell receptive fields to be approximately separable.
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Our theoretical work demonstrates that when feedback effects are present, the geniculate
transfer function, and hence the relay cell spatiotemporal receptive field (inverse Fourier trans-
form of G̃r(k, ω) = T̃rg(k, ω)G̃g(k, ω)), cannot generally be spatio-temporally separable.
For the relay cell spatiotemporal receptive field to be spatio-temporally separable, the Fourier
transform G̃r(k, ω) must factor into a product G̃r

r (k)G̃t
r(ω), and this requires the same type of

separation for G̃g(k, ω) and T̃rg(k, ω). With, for example, feedback inhibition on relay cells
induced via cortical excitation of interneurons, the form of the geniculate transfer function T̃rg

in equation (35) shows T̃rg(k, ω) �= T̃ r
rg(k)T̃ t

rg(ω) in the general case. Only when the product

h̃ri(ω)h̃ic(ω)h̃cr(ω) can be approximated as a constant in equation (36) will spatio-temporal
separation occur.

As seen from equation (30), this result generalizes to all circuits where feedback is
involved: even if all coupling functions are spatio-temporally separable, the geniculate transfer
function T̃rg will not be separable. This result should be treated with a grain of salt, however:
depending on stimulus properties and state of arousal, feedback may be very weak (e.g. cortical
feedback upon presentation of spot stimuli), so that the denominator in equation (30) will be
close to unity, possibly allowing for approximate spatio-temporal separation of the transfer
ratio.

Note also that observations of spatio-temporal coupling in the relay cell receptive field
do not necessarily imply that the geniculate transfer function is spatio-temporally coupled. A
spatio-temporally separable geniculate transfer function would, in conjunction with a spatio-
temporally coupled receptive field of retinal ganglion cells, result in a spatio-temporally
coupled relay cell receptive field as well.

As illustrated for our example feedback model in figures 7(e) and (f), the existence
of resonances in the geniculate transfer function for particular combinations of spatial and
temporal frequencies would be a clear sign of spatio-temporal coupling.

5.4. ON–OFF mixing and luminance dependence

For the purely feedforward case, i.e. feedback from TRN and cortex neglected, the transfer
function is found to be independent of both the mean luminance L0 and the shape of the activity
function l(L0). Due to the mixing of the ON and OFF channels at the reticular level, feedback
from TRN will break this independence. The dependence on L0 and l(L0) is specifically
included in equation (30) via the term K̃ ∗

tr(k, ω; L0) ≡ K̃tr(k, ω)[1 − c1(L0)]. Similarly,
cortical feedback is expected to break the mean-luminance independence of the transfer ratio,
even though an expression for how the transfer ratio in this case depends on the mean luminance
is not given in equation (30). We have not found any experimental data on the mean-luminance
dependence of the retino-geniculate transfer ratio in the literature.

The linear transfer function expression in equation (30) can be extended to include other
synaptic connections. For example, Singer and Creutzfeldt (1970) proposed mixing of ON-
centre and OFF-centre relay cell inputs from retinal ganglion cells. As for the ON-OFF mixing
at the reticular level considered here, this would also lead to transfer functions depending on
the mean luminance L0. Another synaptic connection not considered here is an inhibitory
influence on interneurons from reticular cells (Ahlsén et al 1985).

5.5. Contrast gain and contrast sensitivity

With the ganglion-cell response available one can also straightforwardly obtain the relay cell
contrast gain (essentially |G̃r(k, ω)| (Watson 1992)) from the geniculate transfer function
T̃rg(k, ω), i.e. G̃r(k, ω) = T̃rg(k, ω)G̃g(k, ω) (equation (18)). Moreover, the relay cell
spatiotemporal impulse response function (essentially the receptive field) can be obtained
by performing the inverse Fourier transform on G̃r(k, ω).
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The so-called contrast sensitivity is a measure of the ability to distinguish signal from
noise, and Watson (1990) has provided an expression, applicable to individual (linear) neurons,
relating contrast sensitivity, contrast gain and noise spectrum. This connection is needed if one
hopes to link neuron modelling to psychophysical observations. Watson (1992) also showed
how to relate contrast sensitivities at different levels in the visual system, and applied the
formalism to relate the sensitivities of parvocellular dLGN neurons and cortical cells in the
primate. But Watson’s mathematical model for the geniculate transfer functions was purely
descriptive, while the goal of this work is to contribute to the development of mechanistic
models based on the known neuronal circuitry.

5.6. Significance

We consider the establishment of the general mathematical expression for the geniculate
transfer function T̃rg(k, ω), equation (30), for the full geniculate circuit shown in figures 3
and 5, to be the most important result in this paper. The other transfer function expressions in
equations (18), (23), (28), and (29) can straightforwardly be obtained by omitting terms in the
extended-circuit expression. The expression is based on linear theory and is thus applicable
only for the linear regime, i.e. for small to medium grating contrasts.

The general formula equation (30) allows, in conjunction with the appropriate drifting-
grating data, for rigorous testing of candidate models for the retino-geniculate circuit. Any
mechanistic model which claims to account for the behaviour of the retino-geniculate circuit
must provide correct predictions for the linear regime. The mechanistic models are represented
by the choices of coupling functions Kmn(r, t). The drifting-grating experimental data must
include both the relay cell output (action potentials) and the retinal input (S-potentials) and
should be recorded under conditions where the response is as linear as possible, i.e. low
grating contrast. Preferably, the transfer ratio (and phase shift) should be measured for a set of
combinations of spatial and temporal grating frequencies, i.e. a grid of points in the ν– f -plane.
Experimental recordings at different mean luminances L0 would also be desirable.

We demonstrated how mechanistic models could be tested against experiments by
considering the data of Cheng et al (1995) and exploring two specific example models. The
main purpose of this demonstration was to illustrate the practical use of the method. This
data set is quite limited (only a single temporal frequency). Further, it was recorded with a
significant grating contrast (32%), presumably too high to be in a clearly linear regime.

The good, but not perfect, fits of the purely feedforward (equation (34)) and purely feed-
back (equation (41)) models to the example data set observed in figure 1(b) could certainly be
improved by considering more complex models. For example, one could consider a model with
both feedforward and feedback coupling. This would, however, add more fitting parameters
to the procedure and probably lead to over-fitting of the rather limited example data set.

A consequence of the feedback pathways from TRN and cortex is that the theoretical
expression for the retino-geniculate transfer ratio may diverge for particular combinations of
spatial and temporal frequencies. A model example of this phenomenon is given in figure 7(e).
In the experimental situation this would correspond to a resonance peak in the ν– f -plane.
Whether such a resonance peak can occur under typical experimental conditions is an open
question since the phenomenon depends on an appropriate combination of circuit parameters.

The cortical cells have been lumped into a single cortical neuronal population in our
modelling approach (see section 3.2.4), and the response properties of this neuronal population
are described in a descriptive manner. This does not, however, in itself preclude that
intracortical processing may be accounted for in our modelling scheme; linear cortical
processing may be included by choosing the coupling kernel Kcr appropriately.
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Recently, Kirkland and Gerstein (1998) and Kirkland et al (2000) have modelled the
cortico-geniculate system to explore cortically induced synchronization and long-term corre-
lations of dLGN relay cells. The study of synchronization of spikes between neurons by its
very nature requires spiking neuron models, but these are usually not amenable to mathematical
analysis and thus require large-scale computer simulations. In interpreting the results of such
simulations, one often faces similar problems as when interpreting experimental data, such as
scarcity of data (due to limited computer time), or sampling bias. We therefore believe that
firing-rate models as presented here are preferable to spiking neuron models whenever applica-
ble, because they allow for deeper mathematical analysis and typically require only numerical
evaluation, but not randomized simulation, and thus yield more readily interpretable results.

A good approach to investigate models for the geniculate circuitry would be to record
the response of individual neurons to different kinds of visual stimuli. Then a mathematical
model fitted to experimental results for one type of stimuli would make testable predictions for
experiments with another type of stimuli. Such testing would increase the constraints on the
mathematical modelling and make it easier to falsify a proposed general quantitative model
for the signal processing in dLGN. An example of such an approach used on the limulus retina
is given by Brodie et al (1978a, 1978b).

In such a scheme one needs to relate the quantities measured in the different types of
experiments. Einevoll and Heggelund (2000) derived expressions for the spatial receptive
field for dLGN relay cells (and intrageniculate interneurons) for several mechanistic models
for feedforward inhibition at the geniculate level. They further derived expressions for
the corresponding responses to flashing circular light (or dark) spot stimuli to allow for a
comparison with recent experimental data from Ruksenas et al (2000). In Einevoll et al (2000)
we derived the connection between these purely spatial receptive fields and the spatiotemporal
impulse–response function measured in experiments using drifting gratings (or white noise
analysis). Here we have derived general expressions for the geniculate transfer function
measured in drifting-grating experiments and have shown with examples how specific models
can be tested against experimental data. Thus the mathematical formalism now exists for testing
mechanistic models for retino-geniculate circuitry against both flashing-spot (and flashing-bar)
and drifting-grating experiments. Experiments on relay cells driven by different types of stimuli
during a single recording would thus significantly constrain the possible mechanistic models
for the organization of the geniculate circuitry.
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Appendix A

In this appendix we derive the expression for the geniculate transfer ratio for X-ON cells when
feedback from TRN is included.

The descriptive expression for a TRN cell to drifting gratings is in analogy with
equation (14), given as

Rt(r, t) = lON(L0)G̃ t(0, 0) + L0l ′ON(L0)mG̃ t(k, ω)ei(kr−ωt). (A.1)

In analogy with equation (15) we also have

Rt(r, t) =
∫

τ

∫∫
r0

[K ON
tr (r − r0, τ )RON

r (r0, t − τ ) + K OFF
tr (r − r0, τ )ROFF

r (r0, t − τ )

+ Ktt(r − r0, τ )Rt(r0, t − τ )] d2r0 dτ. (A.2)
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Here K ON
tr (r − r0, τ )(K OFF

tr (r − r0, τ )) is the spatio-temporal coupling function describing
the excitatory influence of a relay ON-cell (OFF-cell) on a TRN cell, and Ktt(r − r0, τ ) is
correspondingly describing the coupling function between two TRN cells. In analogy to the
derivation in equation (16) we find

Rt(r, t) = lON(L0)[K̃ ON
tr (0, 0)G̃ON

r (0, 0) + c0(L0)K̃ OFF
tr (0, 0)G̃OFF

r (0, 0)

+ K̃tt(0, 0)G̃ t(0, 0)] + mL0l ′ON(L0)

[
K̃ ON

tr (k, ω)G̃ON
r (k, ω)

− c1(L0)K̃ OFF
tr (k, ω)G̃OFF

r (k, ω) + K̃tt(k, ω)G̃ t(k, ω)

]
ei(kr−ωt)

= lON(L0)G̃ t(0, 0) + mL0l ′ON(L0)G̃ t(k, ω)ei(kr−ωt), (A.3)

where we have introduced the functions

c0(L0) ≡ lOFF(L0)/ lON(L0), c1(L0) ≡ −l ′OFF(L0)/ l ′ON(L0), (A.4)

and used equation (A.1) in the last step.
We now make the assumption that the ON- and OFF-channels are identical except for

the difference in the functions lOFF(L0) and lON(L0). Mathematically this corresponds to
K̃ ON

tr (k, ω) = K̃ OFF
tr (k, ω) ≡ K̃tr(k, ω) and G̃ON

r (k, ω) = G̃OFF
r (k, ω) ≡ G̃r(k, ω).

Then we identify

G̃ t(0, 0) = K̃tr(0, 0)G̃r(0, 0)[1 + c0(L0)]

1 − K̃tt(0, 0)
,

G̃ t(k, ω) = K̃tr(k, ω)G̃r(k, ω)[1 − c1(L0)]

1 − K̃tt(k, ω)
, [k, ω] �= [0, 0].

(A.5)

The response of an X-ON relay cell to a drifting grating is then given as

RON
r (r, t) =

∫
τ

∫∫
r0

[Krg(r − r0, τ )RON
g (r0, t − τ ) + Kri(r − r0, τ )RON

i (r0, t − τ )

+ Krt(r − r0, τ )Rt(r0, t − τ )] d2r0 dτ

= lON(L0)[K̃rg(0, 0)G̃g(0, 0) + K̃ri(0, 0)G̃ i(0, 0)

+ K̃rt(0, 0)G̃ t(0, 0)] + L0l ′ON(L0)m[K̃rg(k, ω)G̃g(k, ω)

+K̃ri(k, ω)G̃ i(k, ω) + K̃rt(k, ω)G̃ t(k, ω)]ei(kr−ωt)

= lON(L0)

[
(K̃rg(0, 0) + K̃ri(0, 0)K̃ig(0, 0))G̃g(0, 0)

+
K̃rt(0, 0)K̃tr(0, 0)[1 + c0(L0)]

1 − K̃tt(0, 0)
G̃r(0, 0)

]

+ L0l ′ON(L0)m

[
(K̃rg(k, ω) + K̃ri(k, ω)K̃ig(k, ω))G̃g(k, ω)

+
K̃rt(k, ω)K̃tr(k, ω)[1 − c1(L0)]

1 − K̃tt(k, ω)
G̃r(k, ω)

]
ei(kr−ωt)

= lON(L0)G̃r(0, 0) + L0l ′ON(L0)mG̃r(k, ω)ei(kr−ωt), (A.6)

where we have used equations (14), (A.1), and (A.5).
By term-wise comparison of the last two equations in equation (A.6) we can as before

determine G̃r(0, 0) and G̃r(k, ω). The transfer function of the modulated response is now
given by equation (28) in the main text. Correspondingly, the transfer ratio for the mean
response is given by equation (29).
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Appendix B

This appendix shows the derivation of the geniculate transfer function T̃rg(k, ω) when the
complete geniculate circuit in figure 5 is considered.

With feedforward excitation for retinal ganglion cells, feedforward inhibition from
intrageniculate interneurons, feedback inhibition from TRN cells, and feedback excitation
from cortex, the response for a relay cell is given by

Rr(r, t) =
∫

τ

∫∫
r0

[Krg(r − r0, τ )Rg(r0, t − τ ) + Kri(r − r0, τ )Ri(r0, t − τ )

+ Krt(r − r0, τ )Rt(r0, t − τ ) + Krc(r − r0, τ )Rc(r0, t − τ )] d2r0 dτ. (B.1)

In analogy to the derivation in equation (16) we find

Rr(r, t) = l(L0)[K̃rg(0, 0)G̃g(0, 0) + K̃ri(0, 0)G̃ i(0, 0)

+ K̃rt(0, 0)G̃ t(0, 0) + K̃rc(0, 0)G̃c(0, 0)]

+ L0l ′(L0)m[K̃rg(k, ω)G̃g(k, ω) + K̃ri(k, ω)G̃ i(k, ω)

+ K̃rt(k, ω)G̃ t(k, ω) + K̃rc(k, ω)G̃c(k, ω)]ei(kr−ωt)

= l(L0)G̃r(0, 0) + L0l ′(L0)mG̃r(k, ω)ei(kr−ωt), (B.2)

and we identify

G̃r(k, ω) = K̃rg(k, ω)G̃g(k, ω)

+K̃ri(k, ω)G̃ i(k, ω) + K̃rt(k, ω)G̃ t(k, ω) + K̃rc(k, ω)G̃c(k, ω). (B.3)

Likewise we find

G̃ i(k, ω) = K̃ig(k, ω)G̃g(k, ω) + K̃ic(k, ω)G̃c(k, ω),

G̃ t(k, ω) = K̃tr(k, ω)[1 − c1(L0)]G̃r(k, ω) + K̃tt(k, ω)G̃ t(k, ω) + K̃tc(k, ω)G̃c(k, ω), (B.4)

G̃c(k, ω) = K̃cr(k, ω)G̃r(k, ω).

Equations (B.3) and (B.4) represent four equations for G̃r(k, ω), G̃ i(k, ω), G̃ t(k, ω), and
G̃c(k, ω), which when solved give

G̃r(k, ω) =
[K̃rg(k, ω) + K̃ri(k, ω)K̃ig(k, ω)]G̃g(k, ω)

1− K̃rc(k, ω)K̃cr(k, ω)− K̃ri(k, ω)K̃ic(k, ω)K̃cr(k, ω) − K̃rt(k,ω)K̃ ∗
tr(k,ω)+K̃rt(k,ω)K̃tc(k,ω)K̃cr(k,ω)

1−K̃tt(k,ω)

(B.5)

Here we have introduced the shorthand notation K̃ ∗
tr(k, ω) ≡ K̃tr(k, ω)[1 − c1(L0)]. The

geniculate transfer function in equation (30) then follows immediately.

References

Ahlsén G, Lindström S and Lo F-S 1983 Excitation of perigeniculate neurones from X and Y principal cells in the
lateral geniculate nucleus of the cat Acta Physiol. Scand. 118 445–8

Ahlsén G, Lindström S and Lo F-S 1985 Interaction between inhibitory pathways to principal cells in the lateral
geniculate nucleus of the cat Exp. Brain Res. 58 134–43

Bishop P O, Burke W and Davis R 1958 Synapse discharge by single fibre in mammalian visual system Nature 182
728–30

Brodie S E, Knight B W and Ratliff F 1978a The response of the limulus retina to moving stimuli: a prediction by
Fourier synthesis J. Gen. Physiol. 72 129–66



Mechanistic models for the dLGN circuit 529

Brodie S E, Knight B W and Ratliff F 1978b The spatiotemporal transfer function of the limulus lateral eye J. Gen.
Physiol. 72 167–202

Cheng H, Chino Y M, Smith E L, Hamamoto J and Yoshida K 1995 Transfer characteristics of lateral geniculate
nucleus X neurons in the cat: effects of spatial frequency and contrast J. Neurophysiol. 74 2548–57

Cleland B G, Dubin M W and Levick W R 1971 Sustained and transient neurones in cat’s retina and lateral geniculate
nucleus J. Physiol. 217 473–96

Cleland B G and Lee B B 1985 A comparison of visual responses of cat lateral geniculate nucleus neurones with those
of ganglion cells afferent to them J. Physiol. 369 249–68

Coenen A M L and Vendrik A J H 1972 Determination of the transfer ratio of cat’s geniculate neurons through
quasi-intracellular recordings and the relation with the level of alertness Exp. Brain Res. 14 227–42

Dawis S, Shapley R, Kaplan E and Tranchina D 1984 The receptive field organization of X-cells in the cat:
Spatiotemporal coupling and asymmetry Vis. Res. 24 549–64

Dayan P and Abbott L F 2001 Theoretical Neuroscience (Cambridge, MA: MIT Press)
DeAngelis G, Ohzawa I and Freeman R 1995 Receptive field dynamics in the central visual pathways Trends Neurosci.

18 451–8
Dubin M W and Cleland B G 1977 Organization of visual inputs to interneurons of lateral geniculate nucleus of cat

J. Neurophysiol. 40 410–27
Einevoll G T, Kocbach A and Heggelund P 2000 Probing the retino-geniculate circuit in cat using circular spot stimuli

Neurocomputing 32–33 727–33
Einevoll G T and Heggelund P 2000 Mathematical models for the spatial receptive-field organization of nonlagged X

cells in dorsal lateral geniculate nucleus of cat Vis. Neurosci. 17 871–86
Enroth-Cugell C and Robson J G 1966 The contrast sensitivity of retinal ganglion cells of the cat J. Physiol. 187

517–52
Enroth-Cugell C, Robson J G, Schweitzer-Tong D E and Watson A B 1983 Spatio-temporal interactions in cat retinal

ganglion cells showing linear spatial summation J. Physiol. 341 279–307
Funke K and Eysel U 1998 Inverse correlation of firing patterns of single topographically matched perigeniculate

neurons and cat dorsal lateral geniculate relay cells Vis. Neurosci. 15 711–29
Guido W, Lu S-M and Sherman S M 1992 Relative contributions of burst and tonic responses to the receptive field

properties of lateral geniculate neurons in the cat J. Neurophysiol. 68 2199–211
Heeger D J 1991 Nonlinear model of neural responses in cat visual cortex Computational Models of Visual Processing

ed M S Landy and J A Movshon (Cambridge, MA: MIT Press) pp 119–34
Hochstein S and Shapley R M 1976 Quantitative analysis of retinal ganglion cell classifications J. Physiol. 262 237–64
Hubel D and Wiesel T N 1961 Integrative action in the cat’s lateral geniculate body J. Physiol. 155 385–98
Kaplan E, Marcus S and So Y T 1979 Effects of dark adaptation on spatial and temporal properties of receptive fields

in cat lateral geniculate nucleus J. Physiol. 294 561–80
Kaplan E and Shapley R M 1984 The origin of the S (slow) potential in the mammalian lateral geniculate nucleus

Exp. Brain Res. 55 111–16
Kirkland K L and Gerstein G L 1998 A model of cortically induced synchronization in the lateral geniculate nucleus

of the cat: a role for low-threshold calcium channels Vis. Res. 38 2007–22
Kirkland K L, Sillito A M, Jones H E, West D C and Gerstein G L 2000 Oscillations and long-lasting correlations in

a model of the lateral geniculate nucleus and visual cortex J. Neurophysiol. 84 1863–8
Kocbach A, Einevoll G T and Heggelund P 2001 Probing mechanistic models for the retinogeniculate circuit in cat

using drifting gratings Neurocomputing 38–40 727–32
Leibovic K N 1990 Vertebrate photoreceptors Science of Vision ed K N Leibovic (New York: Springer) pp 16–52
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Peichl L and Wässle H 1979 Size, scatter and coverage of ganglion cell receptive field centres in the cat retina

J. Physiol. 291 117–41
Rodieck R W 1965 Quantitative analysis of cat retinal ganglion cell response to visual stimuli Vis. Res. 5 583–601
Ruksenas O, Fjeld I T and Heggelund P 2000 Spatial summation and center-surround antagonism in the receptive

field of single units in the dorsal lateral geniculate nucleus of cat: Comparison with retinal input Vis. Neurosci.
17 855–70

Shapley R and Lennie P 1985 Spatial frequency analysis in the visual system Ann. Rev. Neurosci. 8 547–83
Sherman S M and Guillery R W 1996 Functional organization of thalamocortical relays J. Neurophysiol. 76 1367–95
Sherman S M and Guillery R W 2001 Exploring the Thalamus (New York: Academic)
Sillito A M, Cudeiro J and Murphy P C 1993 Orientation sensitive elements in the corticofugal influence on centre-

surround interactions in the dorsal lateral geniculate nucleus Exp. Brain Res. 93 6–16
Sillito A M and Jones H E 1997 Functional organization influencing neurotransmission in the lateral geniculate nucleus

Thalamus vol 2, ed M Steriade, E G Jones and D A McCormick (New York: Elsevier) pp 1–52
Singer W and Creutzfeldt O D 1970 Reciprocal inhibition of ON- and OFF-center neurones in the lateral geniculate

body of the cat Exp. Brain Res. 10 311–30
So Y T and Shapley R 1981 Spatial tuning of cells in and around lateral geniculate nucleus of the cat: X and Y relay

cells and perigeniculate interneurons J. Neurophysiol. 45 107–20
Steriade M, Jones E G and McCormick D A 1997 Thalamus (New York: Elsevier)
Uhlrich D J, Tamamaki N, Murphy P C and Sherman S M 1995 Effects of brain stem parabrachial activation on

receptive field properties of cells in the cat’s lateral geniculate nucleus J. Neurophysiol. 73 2428–47
Watson A B 1990 Gain, noise, and contrast sensitivity of linear visual neurons Vis. Neurosci. 4 147–57
Watson A B 1992 Transfer of contrast sensitivity in linear visual networks Vis. Neurosci. 8 65–76
Wolfe J and Palmer L A 1998 Temporal diversity in the lateral geniculate nucleus of cat Vis. Neurosci. 15 653–75


