Statistical programming in R

Lars Snipen




Preface

This text is the result of teaching the course STIN300 Statistical program-
ming in R at the Norwegian University of Life Sciences over a few years. It has
evolved by gradual interaction between the teachers and the students. It is still
evolving, and this is the 2015 version.



Contents

1

2

Getting started

1.1 Imstalling R . . .. ... . .
1.2 TheRsoftware . . . . . .. ... ... .. .. ...
1.21 The windowsinR . .. ... ... ... . ...... ...
1.3 The RStudio software . . . . . .. ... ... ... ... .....
1.4 Help facilities . . . . . . . . . ...
1.4.1 TheHelpwindow . . . . . . ... ... ... ........
1.4.2 Helponcommands . . .. ... ... ... .........
1.4.3 Searching for commands . . . . . .. ... ... L.
1.4.4 Partly matching command names . . . . . . . .. .. ...
145 Websearch . . . .. ... .. ...
1.4.6 Remarksonquotes . . . . . . ... ... ... ... ...
1.5 Demos . . . . . . oL
1.6 Important functions . . . . .. ... .. .. ... ... ... ...
1.7 Exercises . . . . . ...
1.7.1 Install and customize . . . . . . . ... ... ... ... ..
1.72 Demos . . . . . . .. L
1.7.3 Help facilities . . . . . . . . ... ... ...
Basic operators and data types
2.1 Arithmetic operators . . . . . . . . ... ... ... ... ...
2.2 Variables and assignment . . . .. ... ... ... ..
2.3 Otherdatatypes . . . . . . . ... ...
231 Integer. . . . . . . . ..o
232 Text . . . ..
233 Logicals . . . . .. ...
2.34 Factors . .. ...
2.4 Typeconversion . . . . . .. ... ...
2.4.1 Converting to character . . . ... ... ... .. .....
2.4.2 Logicals and numerics . . . . . . .. ... ...
2.4.3 Factor to numeric . . . .. ..o Lo
2.4.4 Revealing a variables data type . . . . . . ... ... ...
2.5 Non-types . . . . . . . .
2.6 Variable names . . . . .. ... L L o
2.7 More operators . . . . ...
2.8 Warning: re-assignments . . . . .. .. ..o
2.9 Important functions . . . . ... ... .. L oL
2.10 Exercises . . . ...

CoO 00 0 00 3 N



2 CONTENTS
2.10.1 Volume of cylinder . . . . . ... .. ... ... ... 19
2.10.2 Data type conversion . . . . . . . . . ... ... 19
2.10.3 Special values . . . . . . .. ... o 19
2.10.4 Operator priorities . . . . . . . . . ... Lo 19
2.10.5 Implicit conversions . . . . . . . .. .. ... ... .. .. 20

3 Scripting 21

3.1 Resessions . . .. ... . e 21
3.1.1 Scripts . . . . .. 21
3.1.2  Working directory . . . .. ... ... L. 21

3.2 The first script . . . . ... 22

3.3 The Global Environment . . . . . . . . .. ... ... ....... 23

34 Comments . . . . . . . ... 23

3.5 Important functions . . . .. ... .. ... L oL 24

3.6 Exercises . . . . . .. ... 24
3.6.1 Directories . . . . . ... 24
3.6.2 Cylinder volumes again . . . . . . ... ... ... .... 24

4 Basic data structures 25

4.1 What is a data structure? . . . . . .. .. oo L 25

4.2 Vectors . . . . . .. 25
4.2.1 Creatingavector . . . . . . ... ... Lo 25
4.2.2 Extending vectors . . . . .. ... ... L. 26
4.2.3 Systematic vectors . . . . .. ..o 26
4.2.4 Properties of vectors . . . . . ... ... 26
4.2.5 All scalars are vectors . . . . .. .. .. L. 27
4.2.6 Operatorson vectors . . . . . . . .. .. ... 27

4.3 Vector manipulation . . . . ... ... ... ... ... 28
431 Indexing . . . . . .. .. .. 28
4.3.2 Logical vectors . . . . .. . ... oL 29
4.3.3 Vector circulation . . . .. ... .. ... L. 30

4.4 Matrices . . . . .. Lo 31
4.4.1 Creating a matrix . . . . .. .. .. ... L. 31
4.4.2 Properties of matrices . . . . . ... ... ... L. 32
4.4.3 Matrix manipulation . . . . . ... ..o 32
4.4.4 Operators on matrices . . . . . . . .. ... ... ... 33
4.4.5 What is a matrix really? . . . . . ... ... ... ..... 33

4.5 Important functions . . . . .. ... ... ... L. 34

4.6 Exercises . . . ... e e 34
4.6.1 Sequential vectors . . . ... ... Lo 34
4.6.2 Vector computations . . . . . . ... ... ... .. 34
4.6.3 More vector computations . . . . ... ..o 34
4.6.4 Normal distributed random numbers . . . . . . .. . ... 35
4.6.5 Random sampling . . ... ... ... ... ... .. 35
4.6.6 Matrix manipulations . . . . ... ... 35
4.6.7 Special matrices . . . .. ... L oL 35



CONTENTS

5 More data structures

5.1

5.2

9.3
5.4
5.5

6.1

6.2

6.3

6.4
6.5

The data.frame . . . . . . . . ... oo
5.1.1 Creating a data.frame . . ... ... ... ... . .....
5.1.2 Manipulating data.frames . . . . . ... ...
5.1.3 Textasfactors . ... ... ... ... . ... .......
5.1.4 Properties of data.frames . . . . . . ... ... ... ...
5.1.5 Operators on data.frames . . . . ... ... ... .....
5.1.6 The table command . . . . ... ... ... ... .....
Lists . . o . o o
5.2.1 Creatingalist . ... ... ... ... ... ...
5.2.2 Manipulating lists . . . . ... ..o
5.2.3 Propertiesof lists . . . . ... ... ... ... .......
ArTays . ... e
Important functions . . . . . ... ... ... ... ..
Exercises . . . . ... L L
5.5.1 Lists . . . . . .
5.5.2 Weatherdata . . . .. ... .. ... ... .. ...
5.5.3 Climatedata . . ... ... .. ... .. ..........
6 Input and output
Input and output of formatted text . . . . . . .. ... ... ...
6.1.1 Reading formatted text . . . . .. .. ... ... ... ..
6.1.2 Formatted output . . . .. .. ...
Internal format . . . . .. .. .. ... o o
Unformatted text files . . . . .. . ... ... ... ... ...
6.3.1 Connections . . . . . . . . . ...
6.3.2 Reading line by line . . ... ... ... ... .......
6.3.3 Writing lineby line. . . . . .. .. ... .. ...
6.3.4 Reading huge files . . . ... ... ... ... ... ...,
Important functions . . . . .. .. ... ... .. .. ...
Exercises . . . . ... L
6.5.1 Formatted text . . . . . . ... ...
6.5.2 Extracting data from text files . . .. ... ... .. ...

7 Control structures

7.1

7.2

7.3

7.4

7.5
7.6

Loops . . . . .
7.1.1 Theforloop ... ... ... .. ... ... ... ..
7.1.2 Thewhileloop . . .. ... .. ... ... ... ...
7.1.3 Avoiding loops . . . . . ... o
Conditionals . . . . . . . . ...
7.2.1 The if statement . . . . . . . .. .. ... ... ... ...
7.2.2 Theelsebranch . .. ... ... ... ...........
7.2.3 The switch statement . . . .. ... ... ... .. ...
7.2.4 Short conditional assignment . . . .. ... ... .. ...
Logical operators . . . . . . . . ... ...
Stopping loops . . . . . ..o
7.4.1 The keyword break . . . . . . . .. ... ... ...
7.4.2 Errors . . . . ... e
Important functions . . . . . ... ... ... ... .. ... ...
Exercises . . . . ..

37
37
37
38
39
40
40
40
40
40
41
42
42
42
43
43
43
44

45
45
45
46
46
47
47
47
48
48
48
48
48
49



4 CONTENTS
7.6.1 The central limit theorem . . . . . ... ... . ... ... 58
7.6.2 Yatzyinasingleroll . . . . . ... ... 0L 59
7.6.3 Expected number of rolls to get Yatzy . . . ... .. ... 59
7.6.4 Likelihood ratiotest . . . . ... .. .. ... ... ... 59

8 Building functions 61

8.1 About functions . . . . . . ... ... 61
8.1.1 What is a function? . . . .. .. ... ... . 61
8.1.2 Documentation of functions . . . . .. .. ... ... ... 61
8.1.3 Why functions? . . . . . . .. ... o 62

8.2 The R function syntax . . . . . .. .. ... ... L. 63
8.2.1 The output: return . . . . . . .. .. ... 64
8.2.2 The input: Arguments . . . . . . .. ... 64

8.3 Using afunction . ... ... ... .. ... L. 64

8.4 Organizing functions . . . . . . ... ... oL 0oL 65

8.5 Local variables . . . . ... ... .. ... .. .. ... ... 66

8.6 Important functions . . . .. ... ... L oL 67

8.7 EXercises . . . . . . . . 67
8.7.1 Yatzy-bonus. . ... ... ... ... 67
8.7.2 Yatzy - straights . . . .. ... ... L. 68
8.7.3 Yatzy-pair . . . . . ... Lo 68

9 Plotting 69

9.1 Scatterplots . . . . . . . . ... 69

9.2 Lineplots . . . . . . . 71

9.3 Histograms . . . . . . . . . .. e 71

9.4 Barplot . . . ... 72

9.5 Piecharts . . . . ... Lo 74

9.6 Boxplots . . . . . ... 75

9.7 Surfaces . . . . . . .. 7

9.8 Contourplots . . . . . .. ... L 79

9.9 Color functions . . . . . . . . .. ... 79
9.9.1 Making your own palette . . . ... ... ... ... ... 81

9.10 Multiple panels . . . . . . .. ... L oo 82

9.11 Manipulating axes . . . . . . . ... L Lo 85

9.12 Adding text . . . . . . . ... 87

9.13 Graphics devices . . . . . . . ... 87

9.14 Important functions . . . . . . . .. . . ... ... .. ..., 89

9.15 EXercises . . . . . . .. e e 89
9.15.1 Plotting function . . . . . . .. .. . Lo 89
9.15.2 Weatherdata . . . . . . ... ... ... ... ... 89

10 Handling texts 91

10.1 Some basic text functions . . . . . ... ... oL 91

10.2 Merging texts . . . . . . .. ..o Lo 92
10.2.1 Special characters . . . ... ... ... ... ....... 93

10.3 Splitting texts . . . . . . . ... 93

10.4 Extracting subtexts. . . . . . ... ... L oL oL 94

10.5 Regular expressions . . . . . . . . . .. ... oo 95

10.5.1 Functions using regular expressions . . . . . . . . .. ... 95



CONTENTS 5

10.5.2 Building patterns . . . . . . . ... Lo oL 96

10.6 Traversing lists . . . . . . . . .. ... L Lo 97
10.6.1 In-line functions . . . . . . . .. ... ... ... .. ... 98

10.7 Example: Reading many files . . . . ... ... ... ... .... 98
10.7.1 Systematic filenames . . . . . . . . ... ... ... ... 98
10.7.2 Listing folder content . . . . . .. . ... ... ... ... 99

10.8 Important functions . . . . . . ... ... L. 100
10.9 Exercises . . . . . ... Lo 100
10.9.1 Poetry . . . . . . ..o 100
10.9.2 Dates . . . . . . . . L 100

11 Packages 103
11.1 What is a package? . . . . . . . . . . ... 103
11.2 Default packages . . . . . . . . . . . ... 103
11.3 Where to look for packages? . . . . . . . ... ... ... .. .. 104
11.4 Installing packages . . . . . . . . .. .. .. L. 104
11.4.1 Installing from CRAN . . . . ... ... ... ... .... 104
11.4.2 Installing from file . . . . . ... ... ... ... .. ... 105
11.4.3 Installing from the Bioconductor . . . . . . ... ... .. 105

11.5 Loading packages . . . . . . . . . . .. .. e 105
11.6 Building packages . . . . . . .. ... oo 106
11.6.1 Without RStudio . . . . . .. ... ... ... ... ..., 106
11.6.2 Using RStudio . . . .. ... .. ... ... ... ... 106
11.6.3 How to create the package archive? . . . . . . . ... ... 107

11.7 Important functions . . . . . . . . . .. ... L. 108
11.8 Exercises . . . . . . . e 108
11.8.1 Imputation of data . . . . . . ... ... ... ... ... 108
11.8.2 Making a package . . . . .. .. ... .. 109

12 Data modeling basics 111
12.1 Datasets . . . . . . . . L 111
12.1.1 Explanatory and response variables. . . . . .. ... ... 111
12.1.2 Objects and variables . . . . ... ... ... ... . ... 112
12.1.3 Training and test data . . . . . . . ... ... ... ... 112

12.2 Regression . . . . . . . . .. Lo 113
12.2.1 Simple linear regression . . . . . . . ... ... ... 113
12.2.2 Fitting a linear model using Im . . . . . . . ... .. ... 114
12.2.3 The Im-object . . . . . . . .. .. ..o 115
12.2.4 Making predictions . . . . . .. ... 117
12.2.5 Multiple linear regression . . . . .. ... ... ... ... 118
12.2.6 Regression with factors . . . . ... ... ... ... ... 121
12.2.7 Final remarks on regression . . . . . ... .. .. .. ... 123

12.3 Classification . . . . . . . . ... o 124
12.3.1 Linear discriminant analysis (LDA). . . .. ... ... .. 125
12.3.2 The 1da function . . . . . . . .. ... ... .. 125
12.3.3 Making predictions . . . . . . ... ..o 126
12.3.4 Sensitivity and specificity . . . .. ... ..o 128
12.3.5 Final remarks on classification . . . ... ... ... ... 130

12.4 Important functions . . . . . . . .. .. ... .. ... ... 130

12.5 EXErciSes . . . . v v i e e e e e e e e e 130



6 CONTENTS
12.5.1 LDA on English poems . . .. ... ... ... ...... 130
12.5.2 Imputing in the longest series of monthly temperatures in

Norway . . . . . . . . 131

13 Local models 133

13.1 Largedatasets . . . . . .. .. . .. 133
13.2 Local models . . . . . . . .. .. ... ... ... 134
13.3 Training- and test-set . . . . . . . . .. ... ... ... 134
13.4 Local regression . . . . . . . . . ... 136
13.4.1 Moving average . . . . . . . . ..o 136
13.4.2 Local linear regression . . . . . . .. .. .. .. ... ... 139
13.4.3 The loess function . . . . . . . .. .. ... ... ..... 139

13.5 Local classification . . . . . .. ... ... ... ... .. ..... 140
13.5.1 K-Nearest-Neighbour classification . . . . . .. ... ... 141

13.6 Distances . . . . . . . . . 142
13.6.1 Minkowski distances . . . . . . . ... ..o 142
13.6.2 Scaling of variables . . . . . ... .. ... ... ...... 144

13.7 Important functions . . . . . . . ... ... L. 144
13.8 Exercises . . . . . . ... 144
13.8.1 Classification of bacteria . . . . . . . ... ... ... ... 144

14 Cross-validation 147
14.1 The bias-variance trade-off . . . . . . ... .. .. ... ... 147
14.1.1 Model selection . . . . . .. ... 147
14.1.2 Why model selection? . . . . . .. ... ... L. 148
14.1.3 Predictionerror. . . . . . . . . .. ... 150

14.2 The cross-validation algorithm . . . .. ... .. ... ... ... 150
14.2.1 The leave-one-out cross-validation . . . .. ... ... .. 151
14.2.2 C-fold cross-validation . . . . . . . ... ... ... .... 151

14.3 Example: Temperature and radiation . . . . . . . .. ... .. .. 152
14.3.1 Thedata . .. ... .. ... ... .. .. ... 152
14.3.2 Fitting a linear model . . . . . . .. ... ..o 153
14.3.3 The local model alternative . . . . . . ... ... ..... 154
14.3.4 Fitting the final local model . . . . . . . . ... ... ... 158

14.4 Exercises . . . . . . ..o 159
14.4.1 Classification of bacteria again . . . . . . ... ... ... 159

14.4.2 Faster computations . . . . . . .. ... ... ... .. 159



Chapter 1

Getting started

1.1 Imnstalling R

The latest version of R is available for free from http://www.r-project.org/.
The Comprehensive R Archive Network (CRAN, http://cran.r-project.
org/) has several mirror sites all over the world, and you choose one to download
from. The Norwegian mirror is at the University of Bergen (UiB).

The R software consists of a base distribution plus a large number of packages
that you can add if you like. You start by downloading and installing the base
distribution. Choose the proper platform (Windows, Mac of Unix) for your
computer. We will come back to the packages later.

Our own resource for R is found at http://repository.umb.no/R/. Here
you can find documents that may be helpful for installing R. Please note that
we will not use R Commander in this course, you only need to install R.

1.2 The R software

Having installed R, you can start using it right away. However, in these days
it is customary to use some Integrate Development Environment (IDE), and in
this course we will use the RStudio software. Before we move on to RStudio we
should just briefly look at how R can be used alone.

1.2.1 The windows in R

If you start R the first window you see is the Console window. This is the main
window, and where we communicate with the R software. This is an example
of a command line communication. Most people are used to graphical user
interfaces, but this is different. There are no push-buttons here. In order to
communicate with R we have to write commands in the Console window, and R
(usually) responds by outputting some text in the same window. The Console
window has a menu. Under the Edit menu you find
GUI preferences..., where you can to some extent change the appearance of
your Console window.

Since we need to write programs, we will very soon need an editor where
we can write, edit and save text. In principle you can use any text editor

7
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(e.g. Notepad, Wordpad etc) as long as you can save your text as simple text
files. However, R also has a built-in editor. If you choose the File menu on
the Console window, and choose New script you should get the Editor window
opened. In this window you can now type any text, and save it on file in the
same way you do with any simple text editor.

Sometimes R does not respond to our commands by outputting text, but
rather by displaying some graphical output. This will appear in the Graphics
window. Move to the Console window and type the command

> plot(c(1,2,3,4),pch=16,col="red")

on the command line, and return. This should produce a Graphics window with
a simple plot.

Let us now move on to the RStudio software that we will use throughout
this course.

1.3 The RStudio software

Instead of running R directly, as in the previous section, it has been more
common these days to make use of some of the freely available IDEs made
for R. One such IDE is RStudio. You download and install RStudio from
http://www.rstudio.com/.

With RStudio you have all windows in one customizable environment, and
you also have many facilities available through menus and toolbars. We will
not spend much energy on all the possibilities in RStudio in this course, but
some of the basic features will become apparent as we proceed. The previously
mentioned Console, Editor and Graphics windows are available in RStudio,
along with some other windows as well. An example of an RStudio workplace
is shown in Figure 1.1.

RStudio divides the workplace into 4 panes (2 by 2), and you can to some
degree decide which windows should appear in each pane. On the menu you
choose Tools and Options. .. and a window pops up where you can edit the pane
layout (among other things). The two most important windows are the Console
window (Console) and the Editor window (Source). These will typically be in
the upper two panels, but feel free to customize this if you like.

1.4 Help facilities

1.4.1 The Help window

In RStudio you open the Help-window through the menu, choose Help and then
R Help. In Figure 1.2 the main Help-window is displayed in RStudio. If you
follow the link named An Introduction to R and learn everything you find there,
you can skip the rest of this course!

1.4.2 Help on commands

A command in R is called a function. The simplest and most common way of
obtaining help for a given function is to simply write ? and the function name
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tion()' on how to cite R or R packages in publications.
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Figure 1.1: An example of the RStudio workplace, containing several customiz-
able windows as well as a rich menu and toolbars.

in the Console window. As an example, let us look for help for the function
called 1m in R: Write

> 71m

in the Console window, and then return. The Help-file for this function will be
displayed. The command help(lm) is just an alternative to the question mark,
and produces identical results.

NOTE: When we start some code by >, as above, it indicates we write this
directly in the Console window. You do not actually type in the >. We will see
later that we often write code in files instead, and then we have no > at the start
of the lines.

1.4.3 Searching for commands

The problem with this approach is that you need to know the name of the
function you are seeking help for. When you are new to R, you will in general
know very few function names. In these cases you could use help.search:

> help.search("linear")

which will give you a list of available functions where the term "linear" is
mentioned. If you scroll down this list you should find somewhere the entry
stats::lm. This means that in the package called stats there is a function called
1m and that the help file for this function uses the term linear. But, as you
can see, the list of hits is rather long, and the term linear is found in many
Help-files.
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File Edit Code View Plots Session Build Debug Tools Help
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Figure 1.2: The main Help window invoked in RStudio.

1.4.4 Partly matching command names

The function apropos can be used to get a list of available function that partly
match a name. If you do not remember exactly what a function name was, you
can run

> apropos ("part")

and get a listing of all available functions containing the term part in its name.

1.4.5 Web search

The Help facilities we have seen so far will only give you help on functions and
packages that you have installed on your system. To make a search on the
internet, you can use the function:

> RSiteSearch("linear")

to get an overview of (official) available packages and functions on the internet.
Note: You need to have an internet connection to make this work. Note also
that this will only look up the official R sites, there is most likely much more
to be found on the internet if you make a straightforward Google search (e.g.
"linear in R”).

1.4.6 Remarks on quotes

Before we conclude this section, please note how we used the quotes "". The
name of a function, like 1m, was never enclosed in quotes. But, the text "linear"
and "part" must have the quotes in order to be seen by R as texts. We will
look more closely at texts later, but already now you should take notice of the
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difference between a command (function names are commands) that we want R
to interpret, and a text that should not be given any interpretation.

1.5 Demos

There are several demos in the base distribution of R. Type

> demo ()

in the Console window, and return, to get a list of available demos. To run a
specific demo, e.g. graphics, type

> demo (graphics)

in the Console window.

1.6 Important functions

One important aspect of learning R is to get familiar with the commands avail-
able. Most of these commands are functions (we will talk more about functions
later) and have a Help-file you should look into. I will end every chapter with
a section named Important functions, to sum up some of the important com-
mands we have seen in that chapter. In this first chapter we have not really
seen much, but this will soon change!

1.7 Exercises

1.7.1 Install and customize

Install R and RStudio on your laptop. Customize the appearance of RStudio.
If you want to have the same pane layout as the teacher, take a look at Figures
1.1 and 1.2 for guidance.

Open the Help on RStudio (Help and then RStudio Docs). This will open in
a separate web-browser. We will not spend time on learning RStudio as such,
but you may find it helpful to take some time exploring this.

1.7.2 Demos

Run some of the demos available. At least try out demo(graphics) and demo(
persp).

1.7.3 Help facilities

In R we have a function named log. Find its Help file, and read about this
function. R Help files follow the same basic format, with some variation. In
this case you will also see there are other functions documented in the same
file. If several functions belong together in some way, this is done to reduce the
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number of Help files. If you search Help for exp you will be guided to the same
Help file.
Some questions:

1.
2.

What does log do?

There are also some other functions listed in the same file. What does
logip do? Why?

Read the Usage, Arguments and Details sections, and compute the natural
logarithm of 10 in the Console window.

Compute the logarithm with base 3 of 10.
Compute the logarithm of 0 and of -1.

At the end of the file are always some examples. Copy these into the
Console window line by line, observe the output and try to understand
what happens.



Chapter 2

Basic operators and data
types

2.1 Arithmetic operators

R is a computing environment, and we have all basic arithmetic operators avail-
able. Here are addition, subtraction, multiplication and division:

2+2
2-2
2%2
2/2

Some other frequently used operators are exponentiation, square-root and log-
arithm:

272

sqrt (2)

log(2)

log2(2)

log10(2)

Notice that log() means natural logarithm, usually called In in mathematical
notation. The base-2 and base-10 logarithms have their own functions (see
exercises in previous chapter).

If you type the lines above in your console window, ending each line with a
return, the result of each operation is printed in the console window directly.
However, the results are never stored anywhere.

2.2 Variables and assignment
In order to start programming we need wvariables. The fundamental property

of any computer is the ability to store something in a memory. A variable can
be seen as a location in the computer memory where we can store something.

13



14 CHAPTER 2. BASIC OPERATORS AND DATA TYPES

This ’something’ depends on the data type of the variable. In R, as in all
programming languages, we have several data types available.

The most common data type in R is called a numeric. A variable of type
numeric can store numbers, all kinds of numbers. We can construct a numeric
variable by just giving it a name and a numerical value. Try this in the Console
window:

> a <- 2

This line of code should be read as follows: Create the variable with name a and
assign to it the value 2. Notice how we never really specified that a should be
a numeric data type, this is understood implicitly by R since we immediately
give it a numerical value. This is different from most programming languages,
where an explicit declaration of data type is required for all variables.

Notice also the assignment operator <-, which is quite unique to R (the
S-language). It is a left-arrow, which is a nice symbol, since it means that
whatever is on its right hand side should now be stored in the memory location
indicated by whatever is on its left hand side. Information flows along the arrow
from right to left. You can even write

> 2 -> a

and the assignment is identical! Again, the value 2 is assigned to the variable
a, information flows along the arrow direction. In R you are also allowed to
use = as the assignment operator, i.e. we could have written a=2 above. This
is similar to some other languages, but notice that it says nothing about flow
direction, and you must always assign from right to left (e.g. you cannot write
2=a). We will stick to the <- for assignments in this text.

The arithmetic operators can be used on variables of type numeric:

> a <- 2
> b <- 3
> ¢ <- a*b

which results in three variables (a, b and c), all of type numeric, and with
values 2, 3 and 6. To see the value of a variable, just type its name in the
console window, and upon return R will print its value.

2.3 Other data types

2.3.1 Integer

Not all numbers are numeric. In some cases R will use the type integer instead
of numeric. An integer occupies less memory than a numeric. If you know that
a variable will never contain decimal numbers, you can save some memory by
just using the integer data type. You can specify that a number should be stored
as an integer by adding an L after the number:
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> a <- 2L

We will look more into this when we come to vectors in Chapter 4.

2.3.2 Text

In addition to numbers, we often need texts when dealing with real problems.
A variable that can store a text has the data type character in R. We can create
a character variable in the same way as a numeric:

> name <- "Lars"

Notice the quotes, a text must always be enclosed by quotes in R. The arithmetic
operators are in general meaningless for texts. Text-handling is something we
will come back to in later chapters.

2.3.3 Logicals

A logical data type is neither a number nor a text, but a variable that can take
either the value TRUE or FALSE. Here is an example:

> male <- TRUE

where the variable male now is a logical. Notice that there are no quotes around
TRUE since this is not a text. Logicals are often used as the outcome of some
test, which we will see more of soon.

2.3.4 Factors

Since R has been developed by statisticians a separate data type has been
created to handle categorical data. Categorical data are discrete data without
an ordering. Here is an example:

> nationality <- factor("norwegian",levels=c("swedish","
norwegian","danish"))

This example shows several things. First, the variable nationality is created,
and a factor is assigned to it. The factor value is specified as a text ("norwegian
") but then changed to a factor by giving it as input to the command factor
(). This command also takes another input, namely a specification of which
category levels this factor is allowed to have. Hence, the text we use as first
input to factor must be one of those listed in the second input. Factors can
be created from numbers as well, replacing the texts in the example above with
numbers.



16 CHAPTER 2. BASIC OPERATORS AND DATA TYPES

2.4 Type conversion

It is to some degree possible to convert between data types. Sometimes we
makes specific use of this in order to create solutions. Other times we create
errors by implicitly making conversions where we did not mean to. Since there
are no declarations in R, we are more free to convert between data types than
in most programming languages. This freedom can be both a benefit and a
problem. The problems occur when programs run without errors, but produces
meaningless results. Thus, we need to understand how data types are converted
in R to make proper use of this facility. The explicit conversion functions for
the basic data types are as.character(), as.numeric(), as.logical() and as.
factor() (there are many more conversion functions).

2.4.1 Converting to character

Converting to character is usually non-problematic. Any number, logical or fac-
tor can be converted to a character (text). Converting a number to a character
is done as follows:

> a <- 12
> a.as.txt <- as.character(a)

resulting in a being a numeric variable with value 12 and a.as.txt being a
character variable with value "12". Converting from character to numeric is
only possible if the character contains only numbers. If not, something strange
occurs:

> a.as.txt <- "12a"
> a <- as.numeric(a.as.txt)
[1] NA

Warning message:
NAs introduced by coercion

This results in the variable a having the value NA, which means Not Available.
This is the R way of saying that a value is missing. It was simply not possible
to convert the text "12a" to a number, but the variable a is still created and
assigned NA as value. We will talk more about NA later in this chapter.

2.4.2 Logicals and numerics

A logical can always be converted to a numeric. The rule is that TRUE is converted
to 1 and FALSE to 0. We can also convert any numeric to a logical. The value 0
is converted to FALSE and any other value to TRUE. Notice this lack of symmetry
in the conversions!

2.4.3 Factor to numeric

The conversion from factor to numeric is sometimes very useful. This is always
possible irrespective of how the factor levels are indicated. If we use the example
from above we can convert nationality to a numeric:
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> nat <- as.numeric(nationality)

Now the variable nat is a numeric with value 2. The reason for this value is that
nationality has the value norwegian, which is the second level of this factor.
Levels are numbered by their occurrence in the levels specification. Notice
that even if the factor was specified by the use of characters (texts), the factor
itself only store levels, and these levels can always be converted to numeric.
Hence, we can always convert texts to numbers by first converting to factor and
then to numeric.

2.4.4 Revealing a variables data type

When we have created many variables, it is sometimes useful to inspect some of
them and see which data type they have. The function class() gives you this
information:

> class(a.as.txt)
[1] "character"

> class(nat)

[1] "numeric"

> class(male)

[1] "logical™

2.5 Non-types

It is possible to create a variable without any data type in R:

> a <- NULL

The NULL type is a 'neutral’ or unspecified data type. We create the variable,
give it a name, but does not yet specify what type of content it can take.

We briefly encountered the NA value above, indicating missing information.
This value is special in the sense that all data types can be assigned NA. Any
variable, regardless of data type, can take the value NA without causing any
problems. This makes sense, since any type of data can be missing.

2.6 Variable names

We are free to choose our own names on variables, within certain limits. Try to
use names that describe the variables, and avoid short names like a, b and similar
used in the examples here. In addition to the letters of the English alphabet (al-
ways avoid the @, ¢ and al) a variable name can also contain integers and some
additional characters like _ (underscore) or . (dot). The dot has no special
meaning in R, like it has in many other programming languages, and is fre-
quently used as a 'separator’ in case the variable name is a concatenation of two
or more words. For example, names like car.registration.number can be seen
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in R programs, while in Java it would by convention be carRegistrationNumber.
The latter is of course also possible in R, and replacing the . with _ is a third
option. You decide.

2.7 More operators

In addition to calculations we can also make comparisons. We have in R the
standard comparisons

< b
> b
<=
>=

[ R VR R VR
—
o o oo

The first four are 'larger/smaller than’ and ’larger /smaller or equal to’. The fifth
operator is ’equals’. Notice the double equal symbol. The last is 'not equal’.
The outcome of all these comparisons are the logical values TRUE or FALSE. We
can store the outcome of such tests just as any other value:

> a.is.greater.than.b <- a>b

and the variable a.is.greater.than.b now has the value TRUE or FALSE depending
the values of a and b.

In R we have a clear distinction between assignment, which is done by the
<- and comparison by ==. This distinction is important, and not always clear to
people new to programming. Typing a<-b means we copy the value of b into a.
Typing a==b just compare if the value of a equals the value of b, no assignment
or copying is made.

Variables of the data type logical are usually the result of some comparison.

2.8 Warning: re-assignments

Since we have no declarations in R, a variables data type can change during
program execution. This can be of some benefit, but will perhaps more often
cause problems. Here is an example:

> a <- 2

> class(a)

[1] "numeric"

> a <- "test"

> class(a)

[1] "character"

First we create the variable a and assign to it the value 2. This makes a a
numeric. But, then we assign a text to this variable, and R does not complain,
but immediately changes the type of a to character! There is no warning or
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error, and it is easy to see how such re-assignments can cause problems in larger
programs.

You are hereby warned: Always keep track of your variables, R will not help
you!

2.9 Important functions

Command Remark

factor Creates a variable of type factor
class Returns the type of a variable
as.character, as.numeric etc. Conversion functions

sqrt, log, exp etc. Basic mathematical functions

2.10 Exercises

2.10.1 Volume of cylinder

We will compute the volume of a cylinder. Create two numeric variables named
height and radius, and assign values to them. Let them have values 10 and
1, respectively. Then, let the variable volume be the volume, and use height
and radius to compute the corresponding value for volume. HINT: The number
m (3.1415...) is always available in R as pi. Give new values to height and/or
radius, and recompute the volume. HINT: Use the up-arrow on your keyboard
(multiple times) to repeat previous commands in the Console window.

2.10.2 Data type conversion

Create four variables of different data types: name containing your name (char-
acter), age containing your age (numeric), male containing your gender (logical)
and student indicating if you are bachelor, master, phd or other (factor). Try
to convert each data type to the other three data types. Make a 4 x 4 table
(use pen and paper!) with one row/column for each of the four basic data types
mentioned here. Let rows indicate 'from’ and columns indicate 'to’ and write
in each cell if a conversion 'from’ a certain data type ’to’ a certain data type is
always (A), sometimes (S) or never (N) possible.

2.10.3 Special values

Compute a <- 1/0 and b <- log(0). What are the values of a and b? Compute
c <- a*0. What is the value of ¢? Read the Help-files for Inf and NaN.

2.10.4 Operator priorities

The priority of arithmetic operators are in R just as in any other programming
language. Compute 2+3+4/5-6 in R, but see if you can find the solution manually
(calculator) first. Next, add parentheses to make it -14.
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2.10.5 Implicit conversions

R will implicitly convert between data types, when possible. Create the variables
aa<-2, bb<-TRUE and cc<-factor("A"). Try to compute aa+bb. What happens?
Try aa+bb+cc. What happens now? How about aa+bb+as.numeric(cc)?



Chapter 3

Scripting

3.1 R sessions

So far we have typed commands directly in the Console window. This is not
the way we usually work in an R session.

3.1.1 Scripts

Instead we create a file (or files), and put all our commands in this file, line by
line as we did in the console window. Such files are called scripts. Then, we save
the file under a name using the extension .R as a convention. In order to execute
the commands, we can either copy them from the file and paste them into the
Console window, or more commonly, use the source() function. This means we
spend 99% of the time in the Editor window, and only visit the Console window
each time we want to execute our script.

In RStudio we have a separate editor for writing scripts. From the menu
you choose File - New, and then R Script to create a new script-file. It will
show in the Source pane. Here you can type in your commands and save the
file as in any simple editor. In the header of the editor window you find some
shortcut buttons to run the code. The Souce-button will run the entire script,
and corresponds exactly to the source() function mentioned above. The Run-
button is used to run only parts of the script. Either the single line of code
where your cursor i located, or you first select the code-lines using your mouse,
and the press Run to execute only the selected lines of code.

3.1.2 Working directory

Any R session runs in a directory or folder on your computer. The default choice,
set during installation, is rarely a good choice in the long run. Instead you create
a folder at a proper location on your computer, and run R in this folder. We will
refer to this as the Working Directory, since this is the term used by RStudio. In
RStudio you can easily change the default Working Directory. From the menu,
choose Tools - Optioms... and a window pops up where you can customize your
RStudio in various ways. In the field named Default working directory you can
specify in which folder you would like RStudio to start each time. In the rest

21
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of this text we will use RHOME to symbolize the Working Directory, i.e. replace
RHOME with the full path to your Working Directory.

It is quite customary to create a folder for each project where you are going
to make R-scripts and other R-files that we will see later. In RStudio you can
define such projects by using the Project on the menu. Try to create a new
project, and you will see that the first thing you must decide is the directory
(folder) where it resides. Get used to organizing everything in directories. It
is one of the most common errors for R-beginners to store their files in one
directory and then run R in another, and of course nothing works!

In RStudio there are several ways to change the Working Directory during
a session. If you have a script in the editor, and this has been saved to some
directory, you can make this the Working Directory by the menu Session, then
Set Working Directory and then To Source File Location. Another option is
to use the Files-window (look for the Files tab in the lower to panes). In this
window you can maneuver through your file-tree. In the header of this window
there is a pop-up menu named More. From this you can choose Set As Working

Directory and the folder in the Files-window is now be your working folder.

Your Working Directory is always listed in the header of the Console-window.
Note that in R we use the slash / and not the backslash \ whenever we specify
a file-path, even in Windows.

3.2 The first script

Let us make a small script. Open the editor window (File - New - R script)
and type in the lines

vl <- 2
v2 <- 3
w <- vixv2
d <- v1~v2

and save the file under the name script_3_1.R. NOTE: Lines of code in this
text that does not start with a > is supposed to be written in a file (script), not
directly in the Console window.

Click the Source button. If your script is error free it will produce no output,
and nothing really seems to happen. Well, something did happen. The four lines
of code were executed from the top down. First the variable vi was created,
and given the value 2. Next, the variable v2 was created, and so on. The four
variables still exist in the R memory, even if they are not displayed. If you want
to list all existing variables in the Console window, use the command 1s(). If
you type 1s() in the Console-window it should look something like this now:

> 1s()
[1] Nyl Nygon o ngnowgn

which means there are 4 variables existing, having the names listed. If you type
the name of any of them in the Console window, R will output its value. These
variables will now exist in the R memory until you either delete them or end
you R session.
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3.3 The Global Environment

As previously mentioned, a computers basic property is to store data in a mem-
ory. When you run an R session, the software R has been allocated a certain
amount of the computers internal memory. R divides this into several parts, but
the most important one is called the Global Environment. This is the basic R
memory. In RStudio you will find a window named Environment, look among
the tabs in the panes where you do not have the Source and Console. This En-
vironment window will, by default, list the content of the Global Environment.
You should see the variables named v1, v2, w and d listed here now. In the upper
right corner of the Environment window you can switch between a List and a
Grid view of the content, providing slightly different information.

Notice that the Global Environment is not the only Environment you can
have. Packages are also environments, but we will come back to this later, and
for now we will only focus on the Global Environment.

You can delete a variable from the workspace by the function rm():

> rm(vl)
> rm(list=1s(all=TRUE))

where the first line deletes variable v1 only and the second deletes everything
listed by 1s(). The latter command has a shortcut in RStudio. In the header of
the Workspace-window there is a broom (a Harry Potter flying device) button,
and if you push it the entire workspace is cleared.

When you end R (use the command q() or the File - Quit RStudio menu)
you are always asked if the 'workspace image’ should be saved (workspace means
Global Environment here). In most cases we do not save this. The reason is
that we try to build programs such that everything is created by the running
of scripts (and functions), and the next time we start R we can re-create the
results by just running the same scripts again. This is the whole idea of scripting.
We store the recipes, and re-compute the results whenever needed. There are
exceptions, if the results will take very long time to re-compute you should of
course store them!

When we write R-programs (scripts) it is often a good practice to create
all variables within the program, not relying on that certain variables already
exist in the Global Environment. It is actually a good habit to clear the Global
Environment before you re-run a script, as existing variables may cause your
program to behave erroneously. Make a habit of always clearing the Global
Environment before you Source your scripts.

3.4 Comments

As soon as we start to build larger programs, we will need to make some com-
ments in our script files. A comment is a note we leave in our program to make
it easier to read, both for others and ourselves. It is amazing how much you
have forgotten if you open a script you made a month ago! Comments are not
read by R, they do not affect the program execution at all, they are only there
for our eyes. In R you use the symbol # to indicate the start of a comment, and
the rest of the that line will be ignored by R when the script is run. Sometimes
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we use this to comment out some lines in our script, usually in order to test the
remaining code to search for errors. Here is an example in the script we just
made:

a <- 2

b <- 3

##c <- a*b

d <- a”b # d should be 8

If you run this script line 3 is skipped because it starts with a #, and the variable
c is never created. The comment in the last line does not affect anything because
it is after the code of that line.

The RStudio editor recognizes an R-comment, and will display it in a differ-
ent font and color, making it easy to spot comments in larger programs.

3.5 Important functions

Command Remark
cat See exercises below

3.6 Exercises

3.6.1 Directories

Make a directory on your computer for this course, and make RStudio use
this as startup-directory. You may find it convenient to create subdirectories
under this later, e.g. separate subdirectories for exercises, data, the compulsory
project etc.

3.6.2 Cylinder volumes again

Use the cylinder volume exercise from the previous chapter, and make a script
where you assign values to the height and radius, and then computes the volume.
Output the values of height and radius as well as the corresponding volume on
the Console window by the use of the command cat. Read about this function
in the help-files (type ?cat in the console). HINT: In cat you typically splice
together all elements that should make up your output, like cat( "Hello", "
world", "\n"), which will be concatenated into a single string before output.
The symbol "\n" means line-break. Remember that (almost) anything can be
converted to a string (and then concatenated)! This means the cat function can
take many arguments of different data types, and they are all converted to text
and ’glued’ into a single string. Extend the script by reading height and radius
from the console by using the function scan.
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Basic data structures

4.1 What is a data structure?

A simple answer is a variable with the capability to store several values in
some structured way. All programming languages have data structures, and it
is not until we have some of these under our control that we can really start
programming.

4.2 Vectors

4.2.1 Creating a vector

The basic data structure in R is the vector. It is a linear structure of elements,
and corresponds very well to what we think of as vectors in mathematics and
statistics. However, a vector in R can be of any data type, i.e. not restricted
only to numbers but also be filled with either texts, logicals or factors. Note
the ’either-or’ here. In a vector we can have either numbers, or texts or...etc.
We cannot mix different data types inside the same vector.

A vector can be created by the function c() (short for concatenate). Let us
make a new script-file, and fill in the following lines of code:

# Creating vectors using the c() function
month <- c("January","February","March")
days <- c(31,28,31,30)

where the first vector is of data type character and has 3 elements, and the sec-
ond is of type numeric and has 4 elements. Note that each element is separated
by a comma. Save this file under the name script_vectors.R", and run it (use
the source-button i RStudio or type source("script_vectors.R") in the console
window). Verify that the two vectors are created, they should appear in the
Workspace-window of RStudio.

Vectors are indexed which means every element has a ’position’ in the vector
and that we can refer directly to an element by its position-number, the index.
If we write month[2] we refer to element number 2 in the vector month. The
brackets [] are only used for indexing in R. We will look at this in detail below.
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4.2.2 Extending vectors

We can use the c() function to add new elements to existing vectors. Add the
following line in the script from above:

month <- c(month,"April") # extending a vector

and the vector month now has 4 elements. The new element is added at the end.
Had we written c("April",month) it would have been put first. In general, the
c() function can be used to splice together several vectors.

4.2.3 Systematic vectors

Quite often we need vectors with a systematic ordering of elements, like this:

> idx <- 1:4

which fills idx with the integer values 1,2,3,4. To create more general sequential
vectors, use the function seq(). Then you can specify the starting value, the
ending value and the step-length, and none of them need be integers (see 7seq).

Another systematic vector can be created by rep(). Here is an example of
two frequent uses of this command:

> rep(idx,times=3)

[11 1 23 412341234
> rep(idx,each=3)

[1] 111 2 2 2 3 33444

NOTE: Whenever we start a line of code with a > as above, it just indicates this
is done directly in the Console window, not in a script-file! The output directly
below the statement is what you will see in the Console window.

4.2.4 Properties of vectors

In object oriented programming languages (e.g. Java, python C-++ etc.) all
variables are objects with attributes or properties. They typically carry a set of
functions or methods that you can invoke in each object. In R this is different.
R is basically a functional language instead of a object oriented, even if object
orientation is possible to some degree also in R. More of this later.

The properties of a data structure like a vector is in R decided by the func-
tions available. A typical example is the function length, taking a vector as
input and returning the number of elements in that vector:

> length (month)
[11 4

The data type of a vector is given by class:

> class (idx)
[1] "integer"
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and here we see an example of the data type integer. We mentioned already in
Chapter 2 that numbers can be either numeric or integer. When we create a
vector as a systematic sequence, like we did above, R will make it an integer. If
we made it ‘'manually’ it would be a numeric:

> idx <- c¢(1,2,3,4)
> class (idx)
[1] "numeric"

The reason for this distinction may be more apparent after the next subsection.

Vectors can have names! This means every element in a vector can have
its separate name. This is something we make use of from time to time when
handling data. The function names is used both to extract the names from a
vector and to assign (new) names to a vector. We can give names to the numeric
vector , add this to the script (and re-run):

names (days) <- month # adding names to a variable

which means each element of days now also has a name in addition to the value.
Type days in the console to see its values and names. Notice that the names
are themselves a vector, a character vector, that is stored along with the ’real’
vector. Remember, the value of, say, days[2] is still 28. Its name is just a label.

4.2.5 All scalars are vectors

We should be aware that all scalar (single element) variables we create in R are
in fact vectors of length 1. We should make no distinction between scalars and
vectors, but view them all as vectors. The functions length, class and names
work just as fine on a single variable, and if you have created a scalar variable
x you can refer to it both as just x or x[1].

4.2.6 Operators on vectors

A vector of numeric (or integer) can be added, subtracted, multiplied or divided
by a single number, e.g.:

> days+2
January February March April
33 30 33 32

Notice that the new vector produced, with the increased values, ’inherits’ the
names from the vector days. This is a general rule in R, if the input is named,
the output inherits the names, if possible.

The same arithmetic operator can also be used between vectors, as long as
they have the same number of elements, e.g.

> days - days
January February March April
0 0 0 0
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and the operators are used elementwise. This means the result is a new vector,
having the same number of elements as the two input vectors, and where every
element is the result of using the operator on the corresponding pair of input
elements.

The same applies to comparisons, see chapter 2 for an overview. We can
compare two vectors as long as they are of the same length, and the result is
a new vector where each element is the result of comparing the corresponding
input elements. Comparing a vector to a single value is also straightforward:

> days>30
January February March April
TRUE FALSE TRUE FALSE

i.e. every element of the vector is compared to the value, and the result of
this comparison is returned in the corresponding element of the logical vector
produced. Notice again how the element names are inherited from days.

4.3 Vector manipulation

One important aspect of R programming is the ability to write vectorized code.
We will return to this important concept later, but fundamental to this is the
understanding of how we can manipulate vectors. This is one of the topics most
people find difficult when learning R programming.

4.3.1 Indexing

We can retrieve an element by referring to its position using the brackets [1:

> a.month <- month [3]

which means we create a variable called a.month and assign to it the value of
element number 3 in month. We can also assign new values to an element in a
similar way:

> days [2] <- 29

We can retrieve a selection of elements from a vector

> months <- month[2:3]

resulting in months now being a vector of length 2, having the same values as
elements 2 and 3 of month. We should stop for a second at this example, because
it is important to realize exactly what we are doing here. In fact, the example
can be illuminated by replacing the statement above by

idx <- 2:3
months <- month[idx]
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Add these two lines to the script, clear the workspace, and re-run.

We first create a vector called idx containing the values 2,3. Next, we use
this vector to index a subset of species, and create months to store a copy of this
subset. Let us refer to idx here as the index vector. The index vector should
typically only contain integers, since it will be used to refer to the elements in
another vector. It should also contain integers in the range from 1 to length(
species), i.e. no negative values, no zeros and no values above 4 in this case.
Apart from this, there are no restrictions. How about if we decided to make

> idx <- ¢(1,2,3,3,2,3,2,2,1)

Could we still use idx to extract elements from month? The answer is yes:

> month [idx]
[1] "January" "February" "March" "March" "February"
"March" "February" "February" "January"

Notice that the index vector can be both shorter or longer than the vector
we retrieve from, as long as it only contains integers within the proper range.
Notice also that it is the length of the index vector that determines the length
of the resulting vector. If idx has 100 elements, the result here will also have
100 elements, regardless of how many elements month had.

It should now be apparent that any index vector should be of data type
integer, since it should only contain integers. In the last example above, we
created idx in a 'manual’ way, and if we look at its data type, it is a numeric,
not an integer. However, as soon as we use it as an index vector in month [idx]
it is converted to integer. Let us illustrate this by creating this strange index
vector:

> idx <- ¢(1,2.5,3,2)
> month [idx]
[1] "January" "February" "March" "February"

Notice how our index vector idx now contains a non-integer, which is silly really,
there is no element number 2.5. However, as soon as we use it as an index vector
it is converted to integer, and this is what happens:

> as.integer (idx)
[11 1 2 3 2

The second element is no longer 2.5, but converted to just 2. Converting a
decimal number to an integer is not done by rounding, everything after the
decimal point is simply discarded, i.e. even 2.9999 is converted to 2.

4.3.2 Logical vectors

A very common use of logicals in R programming is to create index vectors.
If we use a vector of logicals instead of integers for indexing, we retrieve those
elements with value TRUE. A small example illustrates this. We can retrieve
element 2 and 3 from the month vector in the following way:
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> 1lgic <- c(TRUE,FALSE,TRUE,FALSE)

and then use this as we used the index vector, month[1gic]. Notice that in this
case the logical vector must have the same number of elements as the vector
we are indexing, in this case 4. If the logical vector is longer than the vector
we index, R will fill in NA in the extra positions of the resulting vector. If the
logical vector is shorter than the vector we index, R will circulate’ the logical
vector. We will look into this in more detail below.

Logical vectors are typically created by performing some kind of comparison.
Let us consider the numeric vector weight from above. Add these lines to the
script:

is.long <- days>30 # is.long will be TRUE for elements
# in days larger than 30
long.month <- month[is.long]

save, clear workspace and re-run. The variable long.month should now be a
vector of length 2, containing the texts "January" and "March".

The function which will produce an index vector from a vector of logicals.
Instead of using is.long directly for indexing, we could have done as follows

> idx <- which(is.long)
> idx
January March

1 3

Notice how which will return a vector with the index of all elements in is.long
being TRUE. We can now use idx as an index vector to produce the same result
as before (month[idx] instead of month[is.smalll). It is in many ways easier to
read the code if we use which. The line which(is.long) is almost meaningful in
our own language: Which (month) is long? The answer is month number 1 and
3.

4.3.3 Vector circulation

In R vectors are often circulated when they are too short. This mean that R
extends a vector implicitly, without telling us. We should be aware of this, or
else it may give us some nasty surprises.

From the example above, let us specify

> 1lgic <- c(FALSE, TRUE)

and then use it to index month. This sounds difficult, since month has 4 elements
and 1lgic only 2. But, in this case R will re-use the elements in lgic enough
times to extend it to the proper length. Let us try:

> month[lgic]
[1] "February" "April"
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and we see that element 2 and 4 is extracted. Implicitly R creates the vector
c(lgic,lgic), having the proper 4 elements, and use this as the logic vector.

The same applies when we use operators on vectors. Let us create two simple
numeric vector, and compute their difference

> a <- 1:5

>b <- 1:3

> a-b

[1] 0 0 0 3 3
Warning message:

In a - b : longer object length is not a multiple of shorter
object length

Notice how subtracting b from a is possible, even if it gives a warning. The
vector b is too short really, having 3 elements, so R extends it to 5 elements as
follows: b.new<-c(b[1],b[2],b[3],b[1],b[2]) and then performs a-b.new.

In fact, this is also what happens when we subtract a scalar from a vector.
The scalar is ’circulated’ enough times to make up a vector of the proper length,
and then the operator is used element by element.

4.4 Matrices

4.4.1 Creating a matrix

The other basic data structure in R is a matriz. It is a two-dimensional data
structure, and we may think of a matrix as a vector of vectors. We create a
matrix from a vector like this:

> avec <- 1:10

> amat <- matrix(avec,nrow=5,ncol=2,byrow=TRUE)
> amat

[,11 [,2]
[1,1] 1 2
[2,1] 3 4
[3,1] 5 6
[4,] 7 8
[5,] 9 10

Since our vector a has 10 elements we need not specify both nrow and ncol,
if we just state that nrow=5 R will understand that ncol must be 2 (or vice
versa). The argument byrow should be a logical indicating if we should fill inn
the matrix row-by-row or column-by-column:

> amat <- matrix(avec,nrow=5,byrow=FALSE)

> amat

[,11 [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
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[5,] 5 10

We can bind together matrices using the functions rbind and cbind. If we
have two matrices, A and B, with the same number of columns, say a 10 x 4 and
a b x 4, we can use rbind(A,B) to produce a third matrix of dimensions 15 x 4.
The function rbind binds the rows of the input matrices, i.e. put them on top
of each other, and they need to have the same number of columns. Opposite,
cbind will bind the columns, put the matrices next to each other, and they need
to have the same number of rows. Here is an example:

> A <- matrix("A",nrow=3,ncol=2)
> B <- matrix("B",nrow=3,ncol=4)
> cbind (A,B)
[,11 [,2] [,3] [,4]1 [,5] [,e6]

[1,] Lyl Lyl ngn ngn ngn ngn
[2,] Lyl Lyl ngn ng" ngn ngn
[3 ] "A" IIAH uBu ||B|| ||B|| IIBII

> rbind (A,B)
Error in rbind (A, B)
number of columns of matrices must match (see arg 2)

4.4.2 Properties of matrices

Instead of a length a matrix has dimensions, extracted by dim

> dim (amat)
[11 5 2

It always returns a vector with 2 elements, the number of rows and the number
of columns.

Instead of just names as we had for a vector, a matrix has colnames and
rownames. Again, such names are just labels we may put on columns/rows if we
like.

The class function works just as before. Notice that all elements in a matrix
must be of the same data type, just as for vectors. All basic data types can be
stored in matrices, not just numbers, but in real life matrices usually contain
numbers.

4.4.3 Matrix manipulation

We refer to elements in a matrix in exactly the same way as we did for vectors,
but we need two indices for every value, row-number and column-number:

> amat [1,2]
[1]1 6

> amat [2:3,1]
[1] 2 3

> amat [3,]
[1] 3 8
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The latter is an example of how we can refer to an entire row. We specify the
row number, but leave the column number unspecified. This means ’all columns’
and we get the entire row. The same applies to columns, try amat[,1] and you
should get the entire column number 1.

It is fruitful to think of a matrix as a vector of vectors, and realize that
indexing is similar, only in two dimensions instead of one. It is in fact possible
to refer to an element in a matrix by a single index only, just as if it was a vector.
If we retrieve element number 7 in our matrix amat, R will count elements in
the first column (5 elements) and then proceed in the second column until the
index has been reached. Since amat has 5 rows and 2 columns we reach 7 at
element [2,2]. This illustrates how ’vector-like’ a matrix really is.

4.4.4 Operators on matrices

Again things are very similar to vectors. The rule is that operators work element
by element. We can add/subtract/multiply /divide by scalars and other matrices
of similar dimensions. Basic mathematical functions like sqrt or log will also
work elementwise.

Matrices can be transposed, i.e. flipping row and columns, and the function
for this is t:

> t(amat)

[,11 [,2] [,3] [,4] [,5]
[1,1] 1 2 3 4 5
[2,] 6 7 8 9 10

4.4.5 What is a matrix really?

The data structure matrix can be seen as a table, but this is not really a proper
description. We will see tables in later chapters, and there is a distinction, e.g.
a matrix cannot contain a mixture of data types (a table can).

A matrix can also be seen as a mathematical object, and in this case it must
be filled with numbers to make sense. We have functions for computing inner
products, determinants and eigenvalues etc. in R, and in such cases a matrix is
clearly a mathematical object.

In this text we will most often see matrices as mathematical objects, and
rarely use them as 'containers’ for storing data. Vectors we meet all the time,
matrices only occasionally.
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4.5 Important functions

Command Remark

c Constructs a vector

seq Constructs a sequential vector

rep Constructs a vector by repeating

length Number of elements in a vector

names Adds/extracts names to/from a vector

which Very important! Read its Help file,
we will use this function frequently

matrix Constructs a matrix

dim Dimensions of a matrix

t Transpose of a matrix

cbind, rbind
plot, points

Binding matrices

Basic plotting functions

Basic statistical functions
Trigonometric functions

Generates random numbers from some
known distribution

mean, median, min, max, sd, var etc.
sin, cos etc.
rnorm, runif etc.

hist Creates histograms
sample Random sampling from some vector
paste Pasting multiple texts into one text

4.6 Exercises

4.6.1 Sequential vectors

Create a vector called x that takes the values from 0.0 to 10.0 with steps of 0.1
(use the seq function). Then compute the sine (sinus) of x using the function
sin (see ?sin) and store this in y. Plot y against x using the basic plotting
function plot. Try plot(x,y,type="1",col="blue"). Read about plot.

Extend the script by also reversing the order of the elements of y. Use an
index vector to do this. Make a new plot with y in reversed order.

Extend the script by making new variables x3 and y3 that contains every
third element of x and y, respectively. Then plot above, but add the line points
(x3,y3,pch=16,col="red"). Read about points.

4.6.2 Vector computations

There are many functions in R that takes a vector as input and gives a single
variable as result. In statistics we often make use of the following functions:
mean, median, sd, min, max, sum. Read the help files of these functions. Use
them on the vector y from above, and verify that they give reasonable results.

4.6.3 More vector computations

Many functions in R take a vector as input and returns a new vector of the
same length as output. The function sin from above is an example. Other
mathematical functions we use often are sqrt, abs, log. Read the help files for
these functions. Use these functions on the y vector from the first exercise.
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4.6.4 Normal distributed random numbers

R have many functions to generate random numbers. The function rnorm pro-
duces independent normal distributed values. The command rnorm(10,mean=0,
sd=1) will produce a vector of 10 values sampled from the normal distribution
with mean value 0 and standard deviation 1. Make a script that samples 100
such values and put them into a vector v. Use the function hist to plot a
histogram and verify that they have an approximate normal distribution. To
indicate that they are independent, plot each value against its following value.
Use the plot function, and plot v[1:99] against v[2:100].

There are many similar functions in R, producing random numbers from
various known distributions. Try to generate numbers from rt, rf, runif,
rchisq and make the same plots.

4.6.5 Random sampling

We also have a function sample that we can use to sample at random from a
vector. Perhaps the simplest random variable is the binomial. The binomial
variable is the number of ’successes’ on n independent trials, where each trial
has two possible outcomes, 'success’ or ’failure’. We can think of it as flipping
a coin and count the number of heads (or tails). Make a vector coin with two
elements, the texts "Head" and "Tail". Then, make a vector coin.flips that
samples at random 100 times from the coin vector. Hint: Use replace=TRUE as
an option in sample.

Count the number of "Head" in coin.flip. The procedure for doing this can
be sketched as follows:

1. Create a logical vector is.head with one element for each element in coin
.flip, and such that is.head is TRUE where coin.flip is "Head".

2. Convert is.head to numeric. Remember how logicals are converted to
numeric, put the result in some vector x.

3. Sum the elements of x.

Implement this, and make certain you understand what goes on in each step.
The actual code to do this can be reduced to one very short line, but start by
doing it step by step to understand what goes on.

4.6.6 Matrix manipulations

Create a 10 x 20 matrix (10 rows and 20 columns) with only 1 in the first row,
2 in the second,..., 10 in the last row. Use, for instance, commands like rep and
rbind or matrix to achieve this. Check help files if necessary. Use the command
image to get a graphical overview of the matrix. Then, create another matrix
of the same dimensions, but with 1 in the first column,2 in the second,...,20 in
the last column.

4.6.7 Special matrices

Create a 5 x 5 identity matrix, i.e. a matrix with 1 on the main diagonal and 0
elsewhere. You may use the function diag. This function works in several ways,
read about it in the help files. For instance, check what happens for:
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> A <- diag(5)
> diag(A)
> diag(diag(A))



Chapter 5

More data structures

5.1 The data.frame

In the previous chapter we introduced matrices as a two-dimensional data struc-
ture, but we also mentioned that a matrix should in general not be seen as a
data table. The proper data structure for this is called a data.frame in R.

5.1.1 Creating a data.frame

We can construct data.frames in many ways. Here is a start of another script
called script_tables.R:

# Creating a data.frame
monthdata <- data.frame(Name=c("Jan","Feb","Mar","Apr"),
Days=c(31,28,31,30))

Type > monthdata in the console and return, or click the names monthdata
in the Workspace window to open a display of the data.frame in RStudio. It
looks like a matrix, but notice how we can have texts in the first column and
number in the second. This was not possible in a matrix. In a data.frame
all elements in the same column must be of the same data type, but different
columns can have different data types. This column-orientation reflects the data
table convention used in all statistical literature: The columns of the data table
are the variables, and rows are the samples. Note that it is not required to
have a line-break between the column-specifications as above, it is just added
for convenience here.

We gave names to the columns directly in the above example. Names on
the columns are not required, but is of course convenient, and we should make
efforts to always have informative names on the columns of a data.frame. The
function colnames that we used for matrices works just as fine on data.frames,
in case you would like to add/change names on the columns. The same applies
to rownames, but quite often the rows are just numbered and any description
of the samples are included as separate columns inside the data.frame.

We can also add new rows or columns to an existing data.frame, here we
add a row:

37
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# Adding a new row
monthdata <- rbind(monthdata,data.frame(Name="May",6Days=31))

Notice how we create a new data.frame on the fly here, having a single row, but
the same columns as the old monthdata, and then use rbind to ’glue’ it below
the existing monthdata rows, producing a new, extended, data.frame.

New columns can be added in a similar way, but perhaps more common is
this approach: We want to add a column indicating the season to our existing
fishdata, and do it simply by

# Adding a new column
monthdata$Season <- c("Winter","Winter","Spring","Spring","
Spring")

Here we create a character vector using the ¢ function again, and assign this to
the column named Season in monthdata. Since this column does not exist, it is
created on the fly as an extra column. This is a short and simple way of adding
a column and giving it a name at the same time.

5.1.2 Manipulating data.frames

We use the same indexing for data.frames as we did for matrices. We can index
single elements, subsets or entire rows/columns. Remember that a data.frame
is column oriented. Each column is a vector, but a row of a data.frame can be
a mixture of various data types. If we retrieve a column, say monthdatal, 2],
this will be a vector. If we retrieve a row, say monthdata[2,], this will be a
single-row data.frame, not a vector. Remember this distinction between rows
and columns in data.frames.

Since columns very often have names, we can also refer to a column by its
name:

> w <- monthdata$Days

where the statement to the right of the assignment is an alternative to
monthdatal[,2]. Use the class function to verify that w is now a numeric
vector.

Here we see the important operator $ for the first time. This operator means
we refer to the variable called Days which is found inside the variable monthdata.
This correponds to the dot-notation in many other programming languages. We
will see more use of $ later.

From time to time we would like to convert a data.frame to a matrix.
Remember that a matrix can only contain a single data type. Since most
data.frames will contain different data types, we usually only convert a part
of the data.frame to a matrix. Here is an example:

> monthmat <- as.matrix(monthdatal[,c(1,3)])
> monthmat

Name Season
1 "Jan" "Winter"
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2 "Feb" "Winter"
3 "Mar" "Spring"
4 ||Aprll llspringll
5 "May" "Spring"

Here we extracted the text columns 1 and 3 of monthdata, and converted them
to a matrix (verify that monthmat is a matrix). Notice how the column names
were inherited. The statement monthdatal,c(1,3)] produces a new data.frame
consisting of the two specified columns:

> class (monthdatal,c(1,3)])
[1] "data.frame"

Notice that when we retrieve a single column, the result is a vector (see the
example with w from above), but if we retrieve two or more columns it is still a
data.frame. Can you imagine why?

We can also convert a matrix to a data.frame, which is always straightfor-
ward:

> atable <- as.data.frame(monthmat)
> class (atable)
[1] "data.frame"

Why convert between data.frame and matrix? A data.frame is a container
where you store your data, and typically we extract the numeric parts of the
data.frame and convert these to a matrix to do some computations. Some com-
putations can be done directly on the data.frame, but more extensive modeling
and analysis often requires the matrix format.

The functions cbind and rbind from the previous chapter can also be used
on a data.frame and works as for a matrix. In the coming chapters we will see
some other functions we can use to manipulate data.frames.

5.1.3 Text as factors

If we look at the data type of the first column of monthdata, we find it is no
longer a text like we entered:

> class(monthdatal,1])
[1] "factor"

Since R has been made by statisticians, they have decided that text entered in
a data table should probably be used as a factor in the end, and the default
behavior of the function data.frame is to convert all texts to factors. Personally,
I rate this as a design failure. Text should be text, and we should convert it
to a factor when we need to. However, it is possible to override the default
behavior. We can either add the argument stringsAsFactors=FALSE to the data
.frame command during creation, or we can state
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options (stringsAsFactors=FALSE)

in the console or at the top of our script, and the default conversion to factors is
turned off for the entire R session. Note the capital letters in stringsAsFactors!
Put the above statement at the top of the script, and re-run.

5.1.4 Properties of data.frames

We can use the dim function on a data.frame just as we did on a matrix, and
the result is a vector of two numbers indicating the number of rows and the
number of columns of the data.frame. We can also use the length function on
a data.frame, it will return the number of columns, same as the second value
returned by dim.

5.1.5 Operators on data.frames

A data.frame is meant to be a container, and we rarely use it as input in com-
putations. You cannot in general not use the arithmetic operators, e.g. adding
a number, to a data.frame. The reason is of course that it may contain non-
numeric data.

You can transpose a data.frame! This is silly really, as it is not a mathe-
matical object. Try to transpose the monthdata data.frame and observe what
happens.

5.1.6 The table command

A data.frame can be seen as a table of data. There is also a function named
table in R, but this has nothing to do with data.frames! Instead, table will
take a vector of discrete elements (e.g. integers or texts) and count the number
of occurrences of each element. We will see the use of this function in some
exercises, but remember it has nothing to do with data.frames.

5.2 Lists

A list is the most general data structure we will look into here. Briefly, a list
is a linear structure, not unlike a vector, but in each element we can store any
other data structure.

5.2.1 Creating a list

A list is created like this:

> a.list <- list(2, # a single number
"Hello", # a text
c(1,1,1,2,3),# a vector

list ("STIN300",5,TRUE)# another 1list
)
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which is very similar to how we created vectors, except that we use 1list instead
of ¢ before the comma-separated listing of elements.

Here we created a list with 4 elements. The first element contains the numeric
2, the second the character "Hello", the third a numeric vector and the fourth
element contains another list. Thus, any list element can contain any data
structure irrespective of the other list elements. This makes lists extremely
flexible containers of data. If we have several variables, of different types, that
in one way or another belong together, we can bundle them all into the same
list.

The list elements can be given names, just like the columns of a data.frame
(actually, a data.frame is just a special list). Let us specify names:

> a.list <- list(Value=2, # a single number
Word="Hello", # a text
Vector=c(1,1,1,2,3),# a vector
List2=1ist ("STIN300",5,TRUE)# another 1list
)

where the 4 list elements now have the names Value,Word,Vector and List2.
Just as for data.frames we should always try to use informative names on list
elements. We are free to choose names as we like, the convention of having a
capital first letter is just a personal habit I have inherited from Java program-
ming.

5.2.2 Manipulating lists

A list can be indexed similar to vectors, but there are some complications. If
we state

> a.list [2]
[[1]]
[1] "Hello"

we do not refer to the content of element 2 in the list. Instead, we refer to
element 2 itself, which is a list of length 1, and inside this single-element list
we find the text "Hello". In order to refer to the content of element 2 we must
write

> a.list [[2]]
[1] "Hello"

i.e. we must use the double brackets. The distinction between a list element
(which is itself a single-element list) and its content is important to be aware
of.

A list cannot take an index vector in the same elegant way as vectors. We
can refer to a sub-list of the three first elements by a.list[1:3], but we cannot
write

> a.list[[1:3]]
Error in alist[[1:3]] : recursive indexing failed at level 2
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If we want to retrieve the contents of all list elements, we simply have to loop
through the list and retrieve them one by one. This means lists are less suited
for doing heavy computations, their use is as containers of data.

If the list elements have names we refer to the content of a list element
directly by using its name:

> a.list$Word
[1] "Hello"

The nice thing about using the name is that we do not need to keep track of
the numbering of the elements. As long as we know there is an element named
Word, we can retrieve it no matter where in the list it occurs.

5.2.3 Properties of lists

A list has a length, and the length() function works properly for a list.

5.3 Arrays

An array is simply an extension of a matrix to more than 2 dimensions. We can
see it as a vector of vectors of vectors... We can create a 3-dimensional array
like this:

> a.box <- array(1:30,dim=c(2,3,5))

If you type a.box in the console window you will see it is displayed as 5 matrices,
each having dimensions 2 x 3.

Arrays are very similar to matrices, just having more indices. We refer to
the elements just like for matrices, e.g. a.box[2,2,4] refers to the element in
row 2, column 2 of matrix 4 in the array. We don’t use arrays very often, but
some functions may produce them as output.

5.4 Important functions

Command Remark

data.frame Constructs a data.frame

colnames, rownames Adds or extracts column/row names for
a matrix or data.frame

list Constructs a list

unlist Extracts the content of a list and store
it in a vector, if possible (dangerous)

array Constructs an array

cor Sample correlation

colMeans, rowMeans, colSums, rowSums Self explanatory...

options Setting global options

attach Making a data.frame an environment

table Tabulates data
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5.5 Exercises

5.5.1 Lists

Make a list containing the month-data from the text. Each list element should
contain the data for one month. Use only the Name and Days data. The list
should have length 5. Add the following single-element list to this list: list(
Name="June",Days=30). Verify that the extended list has 6 elements.

Make another list where the first element has a vector containing the number
3 three times, the second element has the number 2 two times and the last
element has the number 1 once. Use the function unlist on this list. What
happens? Try unlist on the month-data list as well.

5.5.2 Weather data

Load the content of the file daily.weather.RData into R. This is done by the
statement load("daily.weather.RData"). This loads the data.frame
daily.weather. It contains daily measurements of some weather variables from
As in the period 1988 to 2013. When referring to columns in this data.frame you
either specify it using the dollar-notation (see text above), or you can ’attach’
the data.frame and then refer to the columns directly. Here we try out the
latter: Attach the data.frame by attach(daily.weather). Now you can refer to
Air.temp or any other column as if they were vectors in the Global Environment
(in fact, daily.weather will show up as an environment in RStudio).

Compute the difference between Air.temp.max and Air.temp.min for each
day, and store this in a new vector. Make a histogram of these values (use hist).
What was the largest and smallest daily temperature differences? Make a plot
of this daily difference against Air.temp. Is there a relation between the two?

Compute the mean Humidity (use mean). Here we see a very common prob-
lem in large data sets: Some values are missing, indicated by NA (Not Available).
When a vector contains one or more NA, the mean of this vector is also NA. Read
the help file for mean and find out how you can tell this function to ignore NA’s,
and compute the mean from the remaining values. Similar behavior is found for
many other R functions as well.

The last column of this data.frame is the only one that does not contain
numeric data. This is wind direction specified by a text. The function table is
very convenient for categorical data like this. Run table(Wind.dir) and figure
out how table works.

Next, we will extract a subset of these data. Columns 4 to 15 are numeric
measurements, extract these data for all January days, and convert this into a
matrix. The columns are straightforward since they can be specified directly
as the index vector 4:15. The rows are more difficult since every year has 31
January days. A very convenient function in this respect is which that we saw
in thee previous chapter. Here we sketch the procedure:

1. Create a logical vector of the same length as Month and with TRUE on all
January days.

2. Use this vector as input to which

3. The output from which is the index vector to specify the rows.
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Compute the mean of every column of the matrix, using colMeans (read its Help
file).

5.5.3 Climate data

Load the file Tmonthly.RData into R. This is the longest series of monthly tem-
perature measurements in Norway, taken here at As since 1874. It is stored as
a data.frame with the year in the first column and the monthly temperatures in
the remaining 12 columns. Extract the 12 columns of temperature and convert
it to a matrix. Next, put these data into a vector, and make certain the data
are in chronological order. HINT: A matrix M is converted to a vector with
as.vector (M), but this function will concatenate the columns of M. We want
to concatenate the rows, and this is achieved by transposing M first. Plot the
monthly temperatures, and use the option type="1" in the plot function to get
a curve. Can you visually see any indication of global warming?
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Input and output

6.1 Input and output of formatted text

By formatted text we mean data with a 'rectangle-like’ look. Data are arranged
in columns, and there are the same number of data in every column. There is
a single separator symbol between each column (e.g. a comma, semicolon, tab,
space, etc.). These are files typically produced by saving data in a spreadsheet
into a text file, e.g. exporting as .csv file from Excel.

6.1.1 Reading formatted text

The command read.table (or its close relatives read.csv, read.delim etc.) is
used to import the content of a formatted text file into the R memory. Download
the file bears.txt from the course website (Fronter) and store it in your RHOME
folder. Create a new script and enter the following lines:

# Reading data from formatted file. Data columns are

# separated by a single space and each column has a

# name (header).

beardata <- read.table("bears.txt",sep=" ",header=T,
stringsAsFactors=F)

Save the script under the name script_bears.R (or choose your own file name).
Clear the memory and run the script. In the Workspace window of RStudio
you should now see the beardata variable, which is a data.frame containing 24
observations (samples) of 11 variables. If you type beardata in the console you
get the data set listed. Alternatively, you can click on the beardata variable in
the Workspace window, and RStudio will display the data in a nicer way in the
editor.

The first and basic input to read.table is the name of the file you want to
read. If this file is in a different folder than your R session you need to specify
the entire path of that file, e.g. if the file was in a subfolder called data we would
have to enter "data/bears.txt" as the first input. Notice that the file separator
is / in R (just like in UNIX), not \, even if you run R under Windows.

Additional inputs to read.table are optional, and see ?read.table for a full
description. The argument sep indicates how the columns are separated in the
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file. Here it is just a single blank, but other separators may be used. If the
columns are tab-separated we must specify sep="\t" which is the symbol for a
tab. The logical header indicates if the first row should be seen as headers, i.e.
column names.

If you have specified options(stringsAsFactors=F) before you read the data,
you don’t need this argument here. The read.table function also have other
ways of overriding the default conversion of texts to factors. The arguments
as.is can be used to specify which columns not to convert to factor, while
colClasses can be used to specify the data type of every column. Read about
them in the help files.

6.1.2 Formatted output

Once you have a data.frame in R you can output this using the write.table
function. This will produce a text file similar to the file bears.txt that we read
above:

> write.table(beardata,file="bears_copy.txt",sep="\t",
row.names=F)

We need to first specify the data.frame to output, then the file to put it into.
After that we have a number of options we may use if we like. Here we specify
that columns should be tab-separated (sep="\t") and that no row numbers
should be output. The write.table is in many ways quite similar (inverse) to
read.table, see help files for details.

6.2 Internal format

Once you have created some variables in an R session, you may want to save
this for later. Often it will be cumbersome to save everything as formatted text
files. Instead, you may use the save function. If we want to save the variables
a, b and txt we write

> save(a,b,txt,file="datasetl.RData")

Notice that we first list all variables we want to save, and then finally file= and
the name of the file to create. It is a convention that these type of files should
have the .RData extension.

Files saved from R like this are binary files and can only be read by R. If
you want to send data to other people in such files, you must make certain they
have R and know how to read such files.

Reading these files is very easy:

load("datasetl.RData")

will restore the variables a, b and txt in the memory of R.
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6.3 Unformatted text files

Sometimes we need to read data without a format that read.table can handle.
In this case we need to revert to a lower level approach to reading files.

6.3.1 Connections

A connection we can think of as a pipe that R sets up between its memory and
some data source, typically a file or a URL on the internet. There are several
functions for creating such connections, see 7connections. Omnce a connection
has been set up, we open it, read or write data, end finally close it:

> conn <- file("influenza.gbk",open="rt")
> # here we can do some reading...
> close(conn)

In the first line we create a connection using the function file. This function
opens a connection to a file (surprise, surprise...). The first argument is therefore
the file name, in this case "influenza.gbk". The second argument opens the
connection. This argument takes a text describing the mode of the connection.
The string "rt" means read text, i.e. this pipe can only be used for reading (not
writing) and it will only read text. There are several other functions besides
file that creates and opens connections, but we will only focus on file and url
here.

6.3.2 Reading line by line

Once we have established a connection ready for reading text, we can use the
function readLines for reading text line by line from the source. Having the file
influenza.gbk in the RHOME folder, we can make the following short script for
reading it:

conn <- file("influenza.gbk",open="rt")

lines <- readLines (conn)

close(conn)

This should result in the entire file being read, line by line, into the variable
lines. This variable is now a character vector, with one element for each line
of text. Retrieving the relevant information from these text lines is a problem
we will look at later, when we talk more specifically about handling texts.

Instead of reading from a file, we can also read directly from the internet.
The following code retrieves the document from the Nucleotide database at
NCBI for the same file that we read above:

co <- url("http://www.ncbi.nlm.nih.gov/nuccore/CY134463.1",
open="rt")

lines <- readLines (co)

close(co)

In this case the variable lines contains all codes needed to format the web-page
in addition to the text we saw in the file.
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6.3.3 Writing line by line

The writeLines function writes a character vector through a connection, i.e.
it is the inverse of readLines, and its use is very similar. See ?writeLines for
details.

6.3.4 Reading huge files

Sometimes we may have to read files so large that we do not have enough memory
to read the entire file into one variable. In modern science data files become
larger and larger, and files of many gigabytes are not uncommon. In readLines
we can read only a certain number of lines at a time, and in this way we can
split a large file into several pieces. As long as the connection remains open,
readLines will remember where it ended reading, and once we call readLines
again it will continue to read the following lines. In this way we can read a
chunk of text, retrieve whatever we are looking for, and then continue reading
the next chunk, and so on without reading the entire file into memory. The
same principle applies to writeLines, i.e. we can output to files chunk by chunk
if we like.

6.4 Important functions

Command Remark

read.table, write.table Reads/writes formatted text

save, load Saves/loads data in R format

file, url etc. Open connections for reading or writing
close Closes a connection

readlLines, writeLines Reads/writes line-by-line from/to text files
summary Gives a summary of a data.frame (etc.)
sum Sums the elements in a vector or matrix

6.5 Exercises

6.5.1 Formatted text

Download the file bears.txt from Fronter and save it. Make a script that reads
this file into R. Note that if you save the file in a directory different from your
working directory (quite common) you need to specify the path in the file name,
e.g. read.table("data/bears.txt") if the file is in the subdirectory data.

Use the function summary to get an overview of this data set. Read the
Help-file for summary. When we are looking at a new data set, we usually want
to make some plotting before we proceed with more specific analyses. We will
look into plotting in more detail later, but we will take a ’sneek-peak’ at some
possibilities right away.

The first 8 columns of the data.frame you get by reading bears.txt are
numerical observations from a set of 24 bears. We can quickly make pairwise
plots of each of these variables against every other variable. Do this by plot(
beardata[,1:8]) (here I have assumed beardata is the variable name). Which
columns correlate?
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Use boxplot(beardatal,1:8]) to make a plot showing much of the informa-
tion from summary above graphically. Read about boxplots.

The column Gender indicates which bears are male and female. We can use
this to look at the distribution of Weight between genders. Make a boxplot of
Weight for males and females separately by
boxplot (Weight~Gender,data=beardata). Here we see the use of the operator
~. It is related to what we call formulas in R, and we will see this again
later. NOTE: Here we first specified the column names only, and then stated
which data.frame to look for these columns. An alternative statement would
be boxplot (beardatag$Weight beardata$Gender). Here we use the $ operator to
specify directly which data.frame we are using.

Let us perform a two-sample t-test for the difference between male and
female weights of bears. We use the function t.test. First, make an index
vector describing which rows of the data.frame correspond to male bears. Use
this to extract male weights, and store these in the vector mw. Then, do the
same for female bears, and store their weights in fw. Finally, perform the t-test
by t.test(mw,fw). What does this test tell you?

6.5.2 Extracting data from text files

Download the file influenza.gbk from Fronter and save it. This a plain text file
with sequence data in a format called the GenBank format. You can open the
file in any standard text editor and have a look. Obviously, this file cannot be
read by read.table.

Make a script that reads this file into R line by line. After reading the file
the script should output how many lines were read.

This file contains information about a number of influenza genes, one ’chunk’
of text for each separated by a line containing just // (double slash). Make
the script output how many genes there are information about. HINT: Use
a comparison to produce a vector of logicals (TRUE or FALSE), remember how
logicals can be converted to numerics, and use the function sum (see exercise
4.6.5).

If you take a look at the file, you will notice that in the left margin you
find some standard ’tags’, i.e. keywords of the GenBank format. One of them
is SOURCE (in upper case). We would like to retrieve all the SOURCE-lines.
This can be achieved by the use of grep. This function searches a text for a
reqular expression. We will come back to this later, but for now we can just
think of it as a text search. Use grep to find all the SOURCE-lines in the file,
retrieve them and store these in a vector.
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Chapter 7

Control structures

7.1 Loops

Fundamental to all programming is the ability to make programs repeat some
tasks under varying conditions, known as looping. R has these basic facilities
as well. The short words written in blue below are known as keywords in the
language, and we are not allowed to use these words as variable names. They
usually appear in blue font in RStudio, hence the coloring here.

7.1.1 The for loop

This is the type of loop we use when we a priori know how many repetitions we
need. We typically use a for loop when we want to visit all elements in some
data structure. Let us consider a list called alist, and retrieve the content of
the list elements one by one:

for(i in 1:1length(alist)){
x <- alist[[il]
#...do something with x...
}

Here we specify that the variable i should take on the values 1,2, ...length(
alist), and that for each of these values the code between { and } should be
repeated. The keywords here are for and in.

The ’skeleton’ of a for loop looks like this: for(var in vec){}. The variable
named var here is the looping wvariable. This variable is created by the for
statement, and takes on new values for each iteration. We often use very short
names for the counting variable, e.g. i, j etc., but any name could be used.
The values it will take are specified in the vector vec. The length of the vector
vec determines the number of iterations the loop will make. Any vector can be
used here, but most often we construct a vector on-the-fly just as we did in the
example above (remember 1:length(alist) will create a systematic vector).

Notice how already before we start the loop, we know there will be need
for exactly length(alist) iterations. The for loop is the most common type of
loops in R programs.

ol
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7.1.2 The while loop

Sometimes we want a loop to run until some condition has been met, and we
do not know exactly how many iterations it will take to achieve this. In such
cases we use a while loop. Here is an example:

x <- 1
while (is.finite (x)){
X <- x*2
cat( "X=", X, ll\nll, sep="")

Here we give the value 1 to the variable x. Then, we start a loop where we inside
the loop let the new value of x be the old value times 2. We also make a print of
x in the console window (the cat function). The while loop has in the first line
a test. After the keyword while we have some parentheses, and inside them is
something that produces a logical, TRUE or FALSE. As long as we produce a TRUE
the loop goes on. Once we see a FALSE it halts. The function is.finite takes a
numeric as input and outputs a logical TRUE if the input is finite, or FALSE if it
is infinite. Run these lines of code, it gives you an impression of what R think
is ’infinite’...

Notice that in the test of the while above we have to involve something that
changes inside the loop. Here the testing involves x, and x changes value at each
iteration of the loop. If we wrote y <- x*2 instead of x <- x*2 inside the loop,
it would go on forever because x no longer changes value! This is a common
error when people make use of while loops. Such never-ending loops can be
terminated by Session-Interrupt R in the RStudio file menu.

7.1.3 Avoiding loops

Looping is unavoidable in all except the simplest of programs. However, making
explicit loops using either for or while loops is something we should try to avoid
in R. The reason is speed. Loops run extremely slow in R compared to in lower
level programming languages. Thus, if you want your programs to be efficient,
you should learn how to compute without using the explicit loops. This is
achieved by either using vectorized code or by the use of built-in functions where
the looping has been compiled to run much faster. Here are some examples of
what we talk about.

Vectorized code

Create two numeric vectors, a and b, each having 100 000 elements. Then
compute c as the sum of a and b. We have learnt that as long as vectors have
identical length, we can compute this as

c <- a+b

Compare this to the looping solution:

c <- numeric(length(a)) # creates numeric vector of same
length as a
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for(i in 1:length(c)){
c[i] <- al[il+b[i]
}

On my computer the latter took 390 times longer to compute! The concept of
vectorized code simply means we use operations directly on vectors (or other
data structures) as far as possible, and try to avoid making loops traversing
through the data structure. This is often possible, but not always. If you want
to do something to the contents of a list you have to loop, there is no way to
'vectorize’ a list.

Using built-in looping functions

Assume we want to compute the standard deviation for every column of a big
numeric matrix A. We can of course make a for loop, and consider one column
at the time, using A[,i] as input to the function sd, where i is the looping
variable:

sd_columns <- numeric(dim(A) [2])

for(i in 1:dim(A) [2]1){
sd_column[i] <- sd(A[,il)

}

The alternative approach is to use the function apply. The statement

sd_columns <- apply(A,2,sd)

will do exactly the same looping, but faster since the ’hard labour’ of the looping
is done by some compiled code inside this function. As you can see, the code is
also much shorter.

However, sometimes we deliberately use explicit loops also in R programs.
Programs are usually easier to read for non-experts when they contain loops.
The gain in speed is sometimes so small that we are willing to sacrifice this for
more readable code. It should also be said that for smaller problems, where
loops run only over a smallish number of iterations, the speed consideration can
be ignored altogether. The avoiding of loops is most important when we build
functions, because these may themselves be used inside other loops, and the
speed issue becomes a more real problem.

7.2 Conditionals

As soon as we have loops, we will need some conditionals. Conditionals means
we can let our program behave differently depending on what has happened
previously in the program.

7.2.1 The ir statement

The basic conditional is the if statement. Here is an example:
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for(i in 1:10){

cat("i=", i, sep="")
if (i>5){
cat (" which is larger than 5!")
}
cat ("\n")

The loop runs with i taking the values, 1,2,...,10. Inside the loop we have
an if statement. There is a test if(i>5) where the content of the parentheses
must produce a logical. If this logical has the value TRUE, the content of the
statement (between { and }) will be executed. If it is FALSE the code between
{ and } will be skipped. Note that all code outside the if statement is always
executed, independent of the test. Only the code between the curly braces are
affected.

Most if statements are seen inside loops, where the execution of the loop
depends on some status that changes as the loop goes on. But, we can put if
statements anywhere we like in our programs.

7.2.2 The e1se branch

In the basic if statement above we either executed the conditional code or
skipped it. This means whatever code comes after the } of the if statement
will always be executed regardless of the test. We can extend our conditional
statement to a if-else statement if we want to execute either one chunk of code
or another chunk of code

for(i in 1:10){

cat("i=", i, sep="")
if (i>5){
cat (" which is larger than 5!")
} else {
cat (" which is not larger than 5!")
}
cat ("\n")

3

The only difference is that this statement has two sets of braces. The code
inside the first set is executed if the test is TRUE, and the other if it is FALSE.
It is possible to extend the else branch with another if, like this:

if (testl){
# code here

} else if(test2){
# code here

} else {
# code here

}
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and this can be extended in as many cases as you need. Often a branching like
this can be better handled by a switch statement, see below. Note the space
between else and the following if, there is no keyword called elseif in R!

7.2.3 The switch statement

In an if statement we consider binary situations, where a test comes out as
either TRUE or FALSE. Sometimes we want to execute different code depending
on a range of possible outcomes. In these cases we may use the switch statement:

for(i in seq(from=0.1,to=5,by=0.1)){

cat("i=", i, sep="")
switch( EXPR=ceiling (i),
cat("...the loop has just started...\n"),
cat("...we are on our way...\n"),
cat("...halfway there...\n"),
cat("...we are approaching the end...\n"),
cat("...almost done...\n") )

}

cat("...done!\n")

The first argument of the switch (the EXPR=ceiling(i)) is an expression that
evaluates to an integer 1,2,...5. The function ceiling will round up to the
smallest integer larger than i. After this expression we have 5 lines of code
separated by a comma. The integer that comes out as EXPR decides which of
these 5 code-lines will be executed.

The first expression of the switch must either result in an integer or a text.
If it is a text, the comma-separated statement that follows in the switch must
have a label that indicates which text belongs to which statement. Here is an
example:

names <- c("Solve","Hilde","Lars","Guro","Trygve")
for(n in names){
age <- switch(EXPR=n,

Lars =46,

Solve =40,

Trygve =27,
"hidden")

cat( age, "\n" )
}

The loop has a text n as the looping variable. This takes on the different values
in names, hence the loop runs 5 iterations. Inside the loop we assign values to
the variable age. The EXPR of the switch is a text, one of the names. The three
following code-lines are each identified by a label (e.g. Lars), and switch will
try to match the text in n to one of these labels. If a specific match is found, the
corresponding line of code is executed. Note that these code-lines do nothing
but assign a value to the variable age. If no match is found, the last line of
code, with no label, is the one to be executed. This is the default choice when
no specific match is found.
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7.2.4 Short conditional assignment

Sometimes we want to assign to a variable one out of two possible values de-
pending on some condition. This could be solved by the if-else statements as
follows:

if (test){
varl <- x
} else {
varl <- y
}

Thus, after this statement the variable vari has either value x or y. Since this
type of conditional assignments occurs quite frequently in programs, there is a
short-version for writing this kind of statements in R:

varl <- ifelse(test,x,y)

It means vari is assigned the value x if the test comes out as TRUE and y if it
comes out as FALSE. Notice that the function name is ifelse without any space
inside.

7.3 Logical operators

We see that logicals play a central role in looping and testing, and this is a
proper place to look closer at logical variables.

Logicals typically occur from some kind of comparison, and we have seen
the standard comparison operators previously: >, <, >=, <= == and !=. Let us
for now assume that we only compare numerical quantities, we will come back
to the comparison of texts later. We have seen how these operators can be
used to compare vectors, i.e. a vector can be compared against another vector,
producing a logical vector. Let us consider a simple example:

a <- 11:15

b <- rep(13,times=5)
c <- rep(12,times=5)
lgicl <- a>b

lgic2 <- a>c

The comparison in the last two lines are straightforward since both a, b and ¢
have 5 elements, and the result is in each case a logical vector of 5 elements.
Make a script and run this example.

The logical operators are operators used on logical variables. The three
operators we will look into here are &, | and !. The first operator is called
AND, and combines two logical variables into a new logical variable. If we
consider the vectors from the example above we can write

lgic3 <- 1lgicl&lgic?2
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and the vector 1gic3 will now have 5 elements where any element is TRUE if and
only if the corresponding elements in 1gic1 and 1gic2 are both TRUE. In all other
cases it will have the value FALSE. You can combine as many logical variables
as you like this way (with & between each) and the result will be TRUE only for
elements where all input variables are TRUE.

The second operator is OR, and

lgic3 <- 1lgiclllgic2

will now result in 1gic3 being TRUE if either 1gicl or lgic2 is TRUE. Again you
can combine many variables in this way.

The last operator is NOT. Unlike the other two, this is a unary operator (the
others are binary), meaning it involves only one variable, and !1gic1 means that
we flip TRUE and FALSE, i.e. any elements originally TRUE become FALSE and vice
versa.

We can combine the operators into making more complex logical expressions.
What does 1gic3 look like now:

lgic3 <- (lgicil|!lgic2)&lgic?2

As usual, expressions inside parentheses are evaluated first. Sort it out in your
head before you run the code and see the answer.

Logical operators are very common, and you should make certain you un-
derstand how they operate.

7.4 Stopping loops
7.4.1 The keyword breax

The keyword break can be used to stop a loop if some condition occurs that
makes the continued looping senseless. Then the only reasonable solution may
be to stop the looping, perhaps issue some warning, and proceed with the rest
of the program. This can be done by the break statement:

# some code up here...
for(i in 1:N){
# more code here...
if ( test ){
break
}

# more code here...

}

# some code down here...

Here we see that inside the loop is an if statement, and if the test becomes
TRUE we perform a break. This results in the loop terminating, and the program
continues with the code after the loop.

We do not use the break very often. It is in most cases possible to use a
while loop in those cases where we can think of using a break.
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7.4.2 Errors

If we want to issue a warning to the console window, we can use the function
warning taking the text to display as input. Notice that a warning is just a
warning: It does not stop the program from continuing.

If a critical situation occurs, and we have to terminate the program, we use
the function stop. This function also takes a text as input, the text we feel is
proper to display to explain why the program stops. We could use stop instead
of break in the example above. This would result in not only stopping the loop,
but stopping the entire program from running.

For those familiar with other programming languages, the exception handling
might be a familiar concept. This is a way to deal with errors in a better
way than just give up and terminate the program. In R we can also handle
exceptions, but this is beyond the scope of this text.

7.5 Important functions

Command Remark

is.finite Is used to look for inf

numeric, character, etc. Constructs vectors of various data types

apply Applies a supplied function to the
rows/columns of a matrix

stop Stops execution

warning Produces a warning, but execution is

not stopped

7.6 Exercises

Simulation is much used in statistics, and it can be a nice way to illustrate
and analyze certain problems. There is a range of methods called Monte Carlo
methods in statistics, and they all rely on simulation of some kind. In order to
simulate we need 1) a way to sample random numbers, and 2) looping to repeat
this many many times. We will have a first look at stochastic simulation in the
following exercises.

7.6.1 The central limit theorem

The central limit theorem is one of the fundamental mathematical results in
statistics. We will illustrate its result by simulation in R. The theorem says
that the mean value of independent random variables will tend to be normal
distributed, irrespective of how the random variables themselves are distributed.
We illustrate this by sampling uniform data, and show that their mean is approx-
imately normal distributed. Make a script where you first sample 100 random
values from the uniform distribution between 0 and 1 (use runif. Make a his-
togram of them to verify they are indeed uniform between 0 and 1. Then, create
a numeric vector named umeans of length 1000 (you can fill it with 0’s). Then
make a loop running 1000 times, and inside the loop you sample 100 uniform
values like before, and then compute the mean of these. This mean value you
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store in the umeans vector, one by one. After the loop you make a histogram of
umeans. Does it look like a normal distribution?

7.6.2 Yatzy in a single roll

We will now look at the game of Yatzy, where we roll 5 dice. The rolling of 5
dice can be done in R by sample(x=1:6,size=5,replace=TRUE). This means we
sample from the set of integers 1,2, ...,6. We sample from this set 5 times, and
we sample with replacement, i.e. any previously sampled value can be sampled
again (two dice can show the same number). Now make a loop run 100 000
times and in each iteration roll the 5 dice. If all 5 dice are the same, we have
Yatzy. What seems to be the probability of having Yatzy in a single roll? What
is the exact probability of this (use brain, pen and paper)?

7.6.3 Expected number of rolls to get Yatzy

How many rolls do we need to get Yatzy if you can hold (set aside) some dice
after each roll? Try to make an R script that simulates this situation and
estimate the expected number of rolls. Note: It does not matter if you get fives
1s or five 6s, as long as all dice are equal you have Yatzy.

After each roll you need to decide which dice to hold and which to keep
rolling. Example: First roll gives 1 2 2 3 5. I would then hold the two 2s and
try to get three more of these. Second roll gives 3 4 6. Still my two 2s from
first round is the best bet. Third roll gives 1 2 4. Another 2, and I hold this
along with my previous two. I now have only two dice left to roll. Fourth roll
gives 4 5. Nothing improves. Fifth roll gives 2 6. I hold yet another 2, and
have only one die left to roll. Sixth roll gives 1. Seventh roll gives 4, ... and so
on until finally the last die is also 2. The number of rolls we needed to get here
is stored, this is the number of rolls needed to get Yatzy. Now, this is repeated
many times (at least 1000) and the average number of rolls is our estimate of
the expected number.

In addition to the mean number of rolls needed you should also plot the
histogram to see how it distributes. How many rolls do you need to be 90%
certain of getting Yatzy?

7.6.4 Likelihood ratio test

How can we reveal a dishonest die? A fair die has all six outcomes equally likely,
but a manipulated die can produce different results. Here is the theory we need:

In a fair die the six outcomes have probabilities p; = p2 = -+ = pg = 1/6.
We roll the actual die N times, and count the number of times we observe
1,2,....,6. We denote these y1,y2,...,46. This is a multinomial vector, which
is the extension of the binomial (exercise 4.6.5) when we have more than 2
possible outcomes. We can estimate the probabilities as p; = y;/N. If we have
made many rolls (large N) we expect all these estimates to be around 1/6, but
due to the randomness this will never be exactly the case. How can we detect
non-random deviations?
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To compare our observations to the fair die we compute the likelihood ratio:

6
A= uiios (%)
i=1 pi

Notice that if all y; are equal then p; = 1/6 = p; and A = 0. The more A
deviates from 0 the more likely it is that the die is dishonest. But how much
can it deviate from 0 and still be a fair die?

According to the theory —2) should have an approximate y? distribution
(chi-square) with 6—1 degrees of freedom. We will investigate this by simulation.
In R, roll a fair die 30 times, compute the vector y (use table) and compute
A. Repeat this 1000 times, and store the A\ values from each round. Make a
histogram of —2\ and compare to the x? density (use dchisq). (Tip: Use the
option freq=FALSE in hist).

We can now make probabilistic statements around the deviation that A has
from 0. We want a fixed value for A that indicates a dishonest die, and accept
that a fair die will have a 5% probability of also crossing this limit. Which value
of X\ is this? Hint: Use qchisgq.



Chapter 8

Building functions

8.1 About functions

8.1.1 What is a function?

Before we start looking at how we build functions, we should reflect a little on
what a function really is.

A function is a machine. You put something into it, it does something to this
input, and eventually gives some output. In mathematics we have learnt about
mathematical functions. The same picture applies. If the function is called f
you feed it with some input, say z, and it results in some output. We could
write this as y = f(z) indicating that the input is called x, the function itself is
called f and the output is stored in something we call y. In the mathematical
case the input and output are numbers. In a more general function there are
no such restrictions on neither input nor output.

A function is doing a job. Data structures, like vectors, data.frames or lists,
are things. They store data and are the nouns of the computer language. A
function is a verb, does not store anything, it provides action only.

We have already used many functions in R. The function sd is an example. It
is a machine that computes standard deviation. If we have a vector of numbers
called vec we can type sd(vec). This means we invoke the action built into the
function called sd. We give the vector vec as input to it. Inside the function
many things starts to happen, but we do not see this. In fact, we have no
idea what is actually going on inside this machine, and we do not really want
to know it either. We are just happy with getting an output, and this output
should correspond, without error, to what is described in the documentation of
this function.

The name of a function should reflect what it does, sometimes what it out-
puts. There is no naming convention for functions in R, but try to think of a
function as a verb, some action. The name should reflect this action.

8.1.2 Documentation of functions

Documentation is important for functions. First, we need a description of what
the function does. We cannot use the function unless we have some idea of
what it does. Would you buy a machine and install it in your house without
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having any idea of what it does? Next, we need to know what type of input
it takes. We may categorize input into two levels: Essential input and options.
The essential input must always be provided, without this the function will not
work properly, or at all. The options are inputs we may give, but they are not
absolutely necessary. They can be used to change the behavior of this machine.
Finally, we need to know what is the output of the function. An example is the
function plot that we have used many times already. If we write plot(x,type="
1",col="blue") the first input, x, is essential. This is the data to plot, without
this the function has no meaning. The last two inputs, type="1",col="blue" are
options. The function would work without these inputs, but we may provide
them to change the function behavior. In the help files for R functions we find
a system:

Description

First we have a short Description of what the function does. Sometimes this
is too short to really give us the whole picture, but it gives you an impression
of what this machine does.

Usage

Next, we find Usage. This is what we refer to as the function call, i.e. how
do you call upon this function to do a job. It gives you a skeleton for how to
use this function, what to type in order to invoke it. Often only some of the
possible inputs are shown in this call, and ... (three dots) indicates there are
other possibilities.

Arguments

Next we usually find Arguments. This lists all possible inputs. Arguments is
just another word for input here.

Value

Next we may find Value, which is a description of the output from the function.

Details

There may also be a section called Details. Here you find more detailed de-
scription of how the function works.

Other sections

There may be other sections as well, depending on what the maker of the func-
tion found necessary. At the end of the help files you always find some example
code.

8.1.3 Why functions?

Once people started to write programs of some size, it soon became clear that
in order to make this efficient we have to split programs into modules, different
parts that can be built and maintained on their own almost independent of the
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other modules. All programming languages have some variant of functions. In
computer programs we typically do the same jobs over and over again, under
slightly different conditions. Think of plotting as an example. We may need to
make many plots, but with different data, and with different views on how the
plot should look like. Still, sufficiently parts of this job is the same each time
to put it all inside a machine, give it a name, and deploy it as a function in the
R-space.
When we decide to build a function it is for these reasons:

e Re-use of code. Once we have written a function we can use and re-use
this in all other programs without re-writing it.

e Hiding code. When we use a function we do not need to look inside it.
The function itself is often stored away on a separate file. This means
programs get much shorter.

e Saving memory. All variables and data structures we make use of inside a
function only exists for the very short time that the function is running,
and once it is finished they are automatically deleted. Only the output
from the function remains available to us.

It is natural that in a programming course like this we focus on how to build
a function. At the end of the day, it is much more difficult to learn when to
write a function, i.e. what type of jobs should be granted a separate function.
We need a minimum of experience before we can discuss the latter topic.

8.2 The R function syntax

Let us immediately look at an example. In the exercises of the previous chapter
we did some simulation of the Yatzy game. We now want to write a function
that simulates the rolling of dice. It takes as input the number of dice to roll,
and returns the obtained values sorted in ascending order. We want to name
the function roll.dice:

roll.dice <- function(n.dice){
d <- sample(l:6,n.dice,replace=T)
d.sorted <- sort(d)
return(d.sorted)

}

We start out by specifying the function name in the first line. This is always
followed by the assignment operator <- and the keyword function. Then we
have the ordinary parentheses in which we specify the names of the arguments.
In this example we have only one argument. This first line is the signature of
the function. After this we have the curly braces indicating the start and end
of the function body. Inside the body we can write whatever code we like, but
the function should always end with the keyword return and the name of the
variable (in parenthesis) to use as output from this function.
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8.2.1 The output: return

A function in R can only return one single variable, hence we can only name one
variable in the parentheses after return. If you want to return many different
variables as output, you have to put them into a list, and then return the list.
Notice that it is what we specify in the return statement that is used as output.
Any code you (for some silly reason) enter after the return statement will never
be executed, the function terminates its job as soon as it reaches the return.

8.2.2 The input: Arguments

We mentioned above that some arguments are essential while others can be
options. It is common to have the essential arguments first. The options are
then listed, usually the most frequently used options first. The distinction
between essential arguments and options is not a formal one, the difference is
simply that options always have a default value. This must be specified in the
signature line. Default values will be used if no input to that argument is given.
In the example above we can have:

roll.dice <- function(n.dice=1){
d <- sample(l:6,n.dice,replace=T)
d.sorted <- sort(d)
return(d.sorted)

}

which means we have no essential input, only one option. If we call this function
without specifying n.dice it will take the value 1, but if we provide an input
value this will override the default value. We can call it without any input, like
this: roll.dice(). You will see there are many functions in R that takes no
input. This means they can do their job without any input. Try for instance
the function Sys.time() in the console window.

8.3 Using a function

Open a new file in the RStudio editor, and type in the roll.dice function from
above, just as if it was a script. Then, save the file under the name yatzyfun.R
in your R-folder.

In order to use the function we have to source it just like we did with a script.
However, there is a huge difference between a script and a function: When you
source a script, the program is executed line by line. When you source a function
nothing is executed, the function is just created in the workspace memory of R.
Try to source the file yatzyfun.R and you will see that the function appears in
the workspace (unless you have some errors in the code).

A function is executed when you call it. This means we type its name and
give it some input. We call functions in our scripts, and in other functions, or
even directly from the console command line. If you have successfully sourced
the roll.dice function you can write

> roll.dice ()
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in the console window, and the function should return, at random, a single
integer from 1 to 6.

Notice that no function can be called until it has been sourced into memory.
Also, if you make changes to your function you must remember to save the file
and then re-source it into memory. It is only the last version that has been
sourced that is used. This is a very common mistake for beginners, editing
their functions, but forgetting to save and re-source them before trying them
out again.

When we call a function we have to provide it with values for the essential
arguments. In our roll.dice function there are no essential arguments, and we
could get away by calling it without any input. If we want to roll five dice we
have to specify

> roll.dice (5)

indicating that the argument n.dice should take the value 5. Sometimes we also
write

> roll.dice(n.dice=5)

which is identical to the previous call. The difference is that in the latter case
we specified that it is the input argument n.dice that should take the value
5. For this function this was not necessary, since there is only one argument.
But, most functions have multiple arguments, and specifying the name of the
argument is a good idea to make certain there is no confusion about which
argument should take which value. We have seen this when we used the plot
function. We wrote something like plot(vec,type="1",col="red"), where the
second and third argument is specified by their name.

If you do not specify the names of the arguments during call, R expects
the values you give as input to come in the exact same order as the arguments
were defined in the function. This makes it cumbersome for functions with
many input arguments, one mistake leads to error. However, if you name each
input argument, their order makes no matter at alll Naming the arguments also
allows you to leave many optional arguments unspecified. Try the following uses
of plot

> plot(x=1:5,y=c(1,2,3,2,1) ,pch=16,cex=3,col="red" )
> plot(x=1:5,y=c(1,2,3,2,1),col="red",cex=3,pch=16 )

Notice they both produce exactly the same plot, even if some of the arguments
are in a different order in the second call. As long as we name them there is no
confusion. The conclusion is that it is a good idea to always name arguments
in function calls.

8.4 Organizing functions

You may create functions inside your scripts, but it is a good habit to not mix
functions into scripts, but keep them on separate files. You can have many
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functions in the same file, but some prefer to have one function per file, and
even name the file similar to the function. This is your choice.

I have a habit of naming all my scripts along this pattern; script_blablabla
.R. Files containing functions lack the prefix script_. In this way I can quickly
see which files in my folder are containing functions and which are scripts. I
prefer to have several, related, functions in the same file, simply to have less
files.

Typically, a script makes use of several functions. If I make a script about
Yatzy-simulation I would start the script-file like this:

source ("yatzyfun.R")

making certain that the file yatzyfun.R, containing my Yatzy-related functions,
is sourced as the very first step of each new run of the script. Once this line of
code has been executed, all functions in the file yatzyfun.R have been created
in the workspace, ready to be called.

You may ask; how about all the ready-made function we have used, they
are not seen in the workspace? How can we call these functions? The answer
is that the ultimate organization of functions in R is by packages. Once you
install a package, all functions in that package is made available to you without
further sourcing. In the current version of RStudio (version 0.98.501) there is an
Environment window. The workspace is the same as the Global Environment,
which is shown by default in this window, and the functions you build and
source are found here. But, any installed package also has an environment,
and by selecting one of them (click the Global Environment pop-up) you get
listed all functions (and datasets etc.) found in that package. We will talk more
about packages later, but keep in mind a package is (usually little more than)
a collection of functions.

8.5 Local variables

If you have been programming in other languages before, this is a familiar
concept. If you are new to programming, this is usually one of the more difficult
topics, and you should study this carefully to make certain you follow this.

All variables we create in a function, including the arguments, are what we
call local variables. This means they are created and exist only as long as it
takes for the function to complete its job. Once it has finished they are deleted
from the memory. Make a call to the function roll.dice we created above.
After it has finished there are no variables named n.dice, d or d.sorted in the
workspace.

Whenever we call a function we communicate with this machine through its
input and output. Make the following small script:

source ("yatzyfun.R")
number .of .dice <- 7
roll7 <- roll.dice(number.of.dice)



8.6. IMPORTANT FUNCTIONS 67

and source it. Upon completion you will find that the variables number.of.dice
and roll7 exist in the workspace, but not the local variables inside the roll.dice
function. This is what happens:

First we create number.of.dice and give it the value 7. Next, we call the
function roll.dice with number.of.dice as argument. This means the value
of our variable number.of.dice is copied into the function and assigned to the
argument n.dice. Thus, when the function starts to execute its body code lines,
the variable n.dice exists and has the same value as number.of .dice. Note, these
are two different variables, we just copied the value from one to the other.

Inside the function the job is completed, and the variable d.sorted has some
values. Then, as the function terminates the values of d.sorted is copied to the
workspace-variable ro117. We specify by the line
r0ll7 <- roll.dice(number.of.dice) that the variable ro117 should be created,
and assigned the value that is output from the call roll.dice(number.of.dice).

It is imperative that you understand the copying going on here. The value of
number.of .dice is copied into the function, and the value of d.sorted is copied
out of the function.

Why is it designed like this? Why could not the variables inside the function
be visible in the workspace, just like the variables we create in our scripts? We
will not dwell on this issue here, but a short answer is to save space and to make
functions easier to make use of. Remember a function is a machine, like a car.
It is much more convenient to use a car if all the details are hidden away, and
the interface we have to relate to is simple. All machines are designed like this,
even virtual machines.

8.6 Important functions

Command Remark
sort Sorting data in a vector
order The first part of the job done by sort

8.7 Exercises

Let us expand on the file yatzyfun.R and create some more functions relating
to the Yatzy game. In a regular game of Yatzy you always roll the five dice up
to three times in each round. The first part of the game consists of six rounds
where you collect as many as possible of the values 1,2,...,6. In the first round
you must collect the value 1, i.e. after each roll you hold all dice having the
value 1, and you roll the remaining dice. After three rolls you count the number
of dice with value 1, which is your score in this round. In the second round it
is similar but you must now collect the value 2. The score you get after three
rolls is the number of 2’s times 2. Similar applies to the values 3, 4, 5, and 6.
After these six rounds you sum up the scores so far, and if you have more than
62 points you get 50 extra bonus points.

8.7.1 Yatzy - bonus

Make a function called yatzy.part.one that takes as input the target value to
collect (1 or 2 or... or 6). Then, the function rolls the dice (maximum) three
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times, and holds dice after each roll to get as many as possible of the target
value. The function should return the score you achieve on the round. You
should make use of the function roll.dice from the text.

Make a script that uses the functions to simulate the first six rounds of Yatzy
thousands of times, and compute the score to see if the total after six rounds
qualify for bonus. What is your estimate of the probability of getting the bonus?
How does the score-distribution look like after this first part, before you include
the bonus points?

8.7.2 Yatzy - straights

The second part of Yatzy is more strategic (the first part above is pure luck).
You have to make some more or less smart choices after each roll. However,
there are two exception. In two of the part-two rounds you seek what is called
small and large straight. A small straight means the five dice show the values
1, 2, 3, 4 and 5. In a large straight they show 2, 3, 4, 5, and 6. If you obtain a
straight you get the sum of the five values as score (15 and 20, respectively). If
you fail you get O.

Make a function called yatzy.straight taking a logical as input, deciding if
you seek small or large straight. Then the function rolls the dice (maximum)
three times and return the score, i.e. 15 (or 20) if you obtain a small (or large)
straight, 0 otherwise. Again, simulate thousands of rounds to estimate a) the
probability of obtaining small or large straight, and b) the expected number of
points on a round where we seek small or large straight.

8.7.3 Yatzy - pair

Finally, a taste of strategic choice. One of the part-two rounds seeks one pair.
This means we need (at least) two dice to show the same value, and the score
we get is the sum of these two values. It is usually not difficult to get a pair on
three rolls, but we should now aim to get as high values as possible. A pair of
6’s gives you 12 points, while a pair of 5’s give you 10, and so on. If you have
made two of your three rolls, and you have a pair of 3’s, should you hold these
two dice and roll the remaining three to try to get something better? Or, should
you abandon this pair altogether, and roll all five dice, increasing the chance of
getting more points, but also risking to fail?

Make a function called yatzy.one.pair that takes as input a logical named
optimist. If optimist is TRUE you always go for the pair of 6’s no matter how it
looks like after roll 1 and 2. If it is FALSE you are always satisfied with any pair,
only rolling the three remaining dice to improve the existing score. You only
set aside a pair, with no pair seen you roll all dice again, i.e. you either roll five
or three dice in this scenario. Note: If you have no pair after three rolls your
score is 0. Which strategy is the best, the 'Solan’ (optimist) or the 'Ludvig’
(pessimist)?

Can you make the ultimate yatzy.one.pair function, i.e. the function that
beats both the strategies from above? This is a very small taste of artificial
intelligence...
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Plotting

In this chapter we will look closer at how to visually display data and results,
which is an important part of statistics and data analysis in general. We will
introduce certain aspects of R graphics along the way. There is no way we can
dig into the depths of R graphics, there are simply way too many possibilities.
We will restrict this to the most common ways of plotting.

9.1 Scatterplots

A scatterplot is simply a plot of the values in one vector against those in an-
other vector. The vectors must be of the same length. The scatterplot shows
a two-dimensional coordinate system, and a marker symbol is displayed at each
coordinate pair. The commands we use to make scatterplots in R are the func-
tions plot and points that we have already seen. Let us make an example with
some random values from the normal distribution that shows some possibilities:

many.x <- rnorm(1000) *2

many.y <- rnorm (1000) *2

medium.x <- rnorm(30)

medium.y <- rnorm(30)

few.x <- rnorm(5)*0.75

few.y <- rnorm(5)*0.75

plot (x=many.x,y=many.y,pch=16,cex=0.5,col="gray70",
xlab="The x-values",ylab="The y-values",
main="A scatterplot")

points (x=medium.x,y=medium.y,pch=15,col="sandybrown")

points(x=few.x,y=few.y,pch=17,cex=2,col="steelblue")

A result of running this code is shown in Figure 9.1. Notice how we use both
plot and points. The reason is that each time you call plot any previous plot
is erased before the new is displayed. Thus, if you want to add several plots
to the same window, you use plot the first time, and then add more by using
points. You cannot use points unless there is already an existing plot.

There are many options we can give to the plot and points functions. The
option pch takes an integer that sets the marker type. In the example above
the gray markers are round, the blue are squares and the red are triangles (pch
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A scatterplot

The y-values
p

The x-values

Figure 9.1: A scatterplot with three different markers and colors for three groups
of data.

values 16, 15 and 17 respectively). See 7points for the details on which marker
corresponds to which integer. The option cex scales the size of the marker.
By default it is 1.0, i.e. no scaling. The gray markers have been scaled down
(cex=0.3) and the red up (cex=2.0). The color is set by col, type colors() in
the console window to get a listing of all available named colors.

When we make the first plot there are some options we can set here that
cannot be changed by later additional use of points. The range of the axes are
two. The options x1im and ylim specify the outer limits of the two axes. If these
are not specified they are chosen to fit the data given to plot. This is fine, but
if you want to add more plots you must make certain the axes limits are wide
enough to include later data as well. Before you start plotting multiple plots
you must always check for the smallest and largest x- and y-values that you are
going to see, and specify the xlim and ylim accordingly. The function range can
be handy for checking this. Other options you set in the first plot are the texts
to put on the axes, i.e. xlab and ylab, and the title main.
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9.2 Lineplots

If the values on the x-axis (horizontal axis) are sampled from a continuous
variable, like time-points, it is more common to use lines than markers. It also
requires the x-data to be ordered. Here is an example of some plots of this type:
time <- 1:10

time <- 1:10

y1 <- rnorm(10,mean=time)

y2 <- yi+1
y3 <- yi1+2
y4 <- y1+43

plot (x=time ,y=yl,type="1",1lwd=1.0,1lty="solid",
col="saddlebrown",xlim=range (time),
ylim=range(c(yl,y2,y3,y4)) ,xlab="Time (days)",
ylab="y values",main="A lineplot")
points (x=time,y=y2,type="1",1lwd=2.0,1lty="dashed",
col="slategray3")
points(x=time,y=y3,type="1",1lwd=1.5,1ty="dotted",
col="purpled")
points(x=time,y=y4,type="b",lwd=5,1lty="1longdash",
col="seagreen")

The result is shown in Figure 9.2. The functions we use are the same as for the
scatterplot, but some of the options are different. We specify type="1" for line
or type="b" for both (both marker and line) as in the last code line. Instead of
cex we use 1lwd to specify line width, but the scaling principle is the same. The
option 1ty is used to specify the line type.

There are many more options you can give to plot and points, and a good
way to explore them is to explore the function par. This is used to set graphics
parameters, see ?par. Options to par can also be used as options to plot and
points.

9.3 Histograms

We have already seen histograms. A histogram takes a single vector of values
as input, and split the range of values into a set of intervals. Then counts the
number of occurrences in each interval. The function we used is called hist.
Here is an example:

vl <- rnorm(1000)
hist (x=v1,breaks=30,col="lemonchiffon2",
border="lemonchiffon4" ,main="A histogram")

The result is shown in Figure 9.3. The option breaks indicate how many intervals
we should divide the range into, i.e. how many bars we get in the plot. It is
just a suggestion, the histogram function makes the final decision. The default
is breaks=10. The more data you give as input, the more intervals you should
use. The col option specifies the color of the interior of the bars, while border
sets the colors of the bar borders. If you set these to the same color the bars
will ’grow’ into each other. You give texts to the title and the axes as for plot.
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A lineplot
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y values

Time (days)

Figure 9.2: A plot with lines (curves) instead of markers.

9.4 Barplot

A barplot is somewhat similar to the lineplot in Figure 9.2, but we use bars if
the x-axis is discrete (not continuous). It is different from a histogram in the
sense that a histogram bar represent an interval, but a barplot bar represents
a single point on the x-axis. For this reason, the histogram bars have no ’air’
between them, while barplot bars always should have some space between each
bar. Let us look at an example:

parties <- c("R","Sv","Ap","Sp","V","Krf","H","Frp","Other")

poll <- c(1.4,4.9,28.4,4.7,4.5,5.3,32.9,15.6,2.2)

barplot (height=poll ,names.arg=parties,col="brown",
xlab="Political parties",ylab="Percentage votes",
main="A barplot")

The result is shown in Figure 9.4. The option names.arg should be a vector
of texts to display below each bar, thus it must be of the same length as the
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Figure 9.3: A histogram with colored bars and borders.

essential argument height.

Sometimes we want to put two (or more) sets of bars in the same plot. Let
us roll a fair die 1000 times, and compare the outcomes to a die where the
probability of 1 and 6 is larger then in a fair die:

dl <- sample(x=1:6,size=1000,replace=T)

d2 <- sample(x=1:6,size=1000,replace=T,prob=c(3,1,1,1,1,3))

cl <- table(dl)

c2 <- table(d2)

countmat <- matrix(c(cl,c2),nrow=2,byrow=T)

die.names <- paste("Die=",names(cl),sep="")

barplot (height=countmat ,names.arg=die.names,
col=c("tan2","tan4"),beside=TRUE,horiz=TRUE, las=2,
xlab="0Outcomes" ,main="Fair and unfair die")

In Figure 9.5 we show the result, where the brighter bars show the distribution
of the fair die, and the darker bars of the unfair die, having larger probabilities
of getting a 1 or a 6. We used the option beside=TRUE to put the bars beside
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A barplot
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Figure 9.4: A barplot is used when the x-axis is discrete.

each other. Try to run this code with beside=FALSE to see the effect. We also
used the option horiz=TRUE to put the bars horizontally.

9.5 Pie charts

An alternative to the barplot is the pie chart. This will only give you the relative

distribution between the outcomes, not the absolute count in each group. Here

is the pie chart version of the votes from above, where we also arrange the

parties in the ’political” order from left to right:

parties <- c("R","SV","Ap","Sp","V","Krf","H","Frp","Other")

poll <- c(1.4,4.9,28.4,4.7,4.5,5.3,32.9,15.6,2.2)

p.-col <- c("darkred","red2","red","green","green2",
"yellow","blue","blue2","black")

pie(x=poll,labels=parties,col=p.col,main="A pie chart")

See in Figure 9.6 how it looks like. Pie charts can be used for giving an overview
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Figure 9.5: A barplot with two sets of count data as bars beside (above!) each
other.

of discrete distributions. They are more popular in business than in academic
sciences, probably because they make it difficult to read exact (academia is
about telling the truth, business is about telling a good lie!). Look at the help-
file for pie. In the very first sentence under Note it says: Pie charts are a very
bad way of displaying information)

9.6 Boxplots

A boxplot, or box-and-whisker plot, is a way to visualize a distribution. We
can have several distributions in the same boxplot. Let us sample data from
three different distributions: The standard normal distribution, the student-
t distribution with 3 degrees of freedom and the uniform distribution on the
interval (0,1). Then we make boxplots of them.
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Figure 9.6: A pie chart as an alternative to a barplot.

dist.samples <- list(Normal=rnorm(25),Student=rt(30,df=3),
Uniform=runif (20))
boxplot (dist.samples ,main="A boxplot",
col=c("bisquel","azurel","wheatl"))

In Figure 9.7 you can see the boxplot produced. For each group of data we have
a box. The horizontal line in the middle is the median observation. The width
of the box and the notches reaching out from the box describe the spread of the
data. Their exact meaning can be adjusted by options, see ?boxplot for details.
Finally, extreme observations are plotted as single markers. We see from the
current boxplot that the uniform distribution has the smallest spread, and is
also centered above zero. The normal distribution is centered close to zero,
and the same applies to the Student-t distribution. The latter has 1 extreme
observation.
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Figure 9.7: A boxplot.

9.7 Surfaces

We can also plot surfaces in 3D. A surface is a matrix of heights (the z-
coordinate) where each row and column corresponds to a location in two di-
rections (x-coordinate and y-coordinate). Here is an example:

vx <- 1:20
vy <- (1:30)/5
vz <- matrix(0,nrow=20,ncol=30)
for(i in 1:20){

for(j in 1:30){

vz[i,j] <- max(0,logl0(vx[i])+sin(vy[jl1))

}
}
persp (x=vx,y=vy,z=vz,theta=-60,phi=30,main="A surface",

col="snow2")

The surface can be seen in Figure 9.8. The essential arguments to persp are the
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Figure 9.8: A 3D surface.

data (x-, y- and z-coordinates, where the latter is a matrix). The two additional
options specified here control the angle from where we see the surface. Try
different values for theta and phi and see how you can see the surface from
various perspectives, or replace the line persp(x=vx,y=vy,z=vz,theta=-60,phi
=30) with

for(i in 1:100){
th <- i-150
ph <- (100-i)/2
persp (x=vx,y=vy,z=vz,theta=th,phi=ph)
Sys.sleep(0.1)

and run the 'movie’.
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9.8 Contourplots

Even if surfaces may look pretty, they are difficult to read, and a better way of
displaying them is often by a contourplot. The function filled.contour can be
used for this purpose, and here we use exactly the same data as in the surface
example to make such a plot:

vx <- 1:20
vy <- (1:30)/5
vz <- matrix(0,nrow=20,nco0l=30)
for(i in 1:20){
for(j in 1:30){
vz[i,j] <- max(0,logl0(vx[il)+sin(vy[j1))
}
}

filled.contour (x=vx,y=vy,z=vz,main="A contourplot")

The plot it produces is shown in Figure 9.9. A contourplot sees the surface
from ’above’ and divides it into levels of different colors, just like a map. Until
now we have just used named colors in our plots. This is no longer the case for
contourplots. It is time we take a closer look at colors.

9.9 Color functions

In a contourplot we need a range of colors. A color palette is a function that
gives you a vector of colors. The palette function typically takes an integer as
input and outputs a vector of that length. There are several built-in palette
functions in R. Here is one example called rainbow:

cols <- rainbow (80)
barplot (rep(1l,time=80) ,col=cols,border=cols,
main="Eighty colors produced by rainbow()")

See the colors in the barplot in Figure 9.10. If you inspect the vector cols you
will see it contains texts, and these texts are actually hexadecimal numbers that
R converts to colors. In the example above we used these color-codes instead of
the named colors as input to barplot. In all cases we have used named colors we
could have used these color-codes instead. Notice that it was our choice to look
at 80 colors in the example above, you could just as well have chosen another
integer.

The function filled.contour from above takes as one of its options a color
palette. The default is a palette called cm.colors, but let us try the palette
called terrain.colors
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Figure 9.9: A contourplot is like a map, and usually a more informative display

than a 3D surface.

vx <- 1:20
vy <- (1:30)/5
vz <- matrix(0,nrow=20,nco0l=30)
for(i in 1:20){
for(j in 1:30){
vz[i,j] <- max(0,logl0(vx[i])+sin(vy[j1))
}
}
filled.contour (x=vx,y=vy,z=vz,color.palette=terrain.colors,
main="A contourplot with terrain.colors")

Compare Figure 9.9 to Figure 9.11.
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Figure 9.10: The colors produced by a built-in palette. Each vertical bar has a
different color.

9.9.1 Making your own palette

A palette is a function, and we have seen how we can make our own functions.
However, we do not need to type in a lot of code to produce a palette function,
there are actually built-in functions in R that produces another function!

The function colorRampPalette can be used to create a new palette function.
You give it as input a vector of colors, and the created palette function will
interpolate between these colors to produce the final colors. This means the
ordering of the colors is very important for the final result. Let us make an
example where we try to make a palette function that gives us colors similar to
what we find in maps. In maps we usually see dark blue colors for the deepest
oceans, turning gradually into lighter blue and then green when we enter the
sea surface. In-land the colors gradually change to yellow, then orange and red-
brown as we approach high mountains. Here is an effort to create a palette for
this coloring;:
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Figure 9.11: A contourplot can take a palette function as input, and display the
colors produced by the palette.

base.cols <- c("blue4","blue2","blue","green","yellow",
"orange","red4","brown")

my.colors <- colorRampPalette(base.cols)

filled.contour (x=vx,y=vy,z=vz,color.palette=my.colors,
main="A contourplot with our own colors")

Here we assume the data for making the contourplot is still available in the
workspace, if not, run the previous examples first. The result is shown in Figure
9.12.

9.10 Multiple panels

We can easily produce several plots in the same window. The simplest approach
is to use the par function. One of its option is mfrow, and this should be given a
vector of two elements. It divides the plot-window into rows and columns, and
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Figure 9.12: A contourplot where we have used our own palette, see text for
details.

the first value of mfrow is the number of row, the second the number of columns.
If we want to make two plots beside each other, it means we divide the window
into one row and two columns, hence we set mfrow=c(1,2). Here is an example
where we divide into 2 rows and 3 columns:

par (mfrow=c(2,3))

plot (1:10,rnorm(10) ,pch=15,col="red4")

plot (rnorm (1000) ,rnorm (1000) ,pch=16,cex=0.5,col="steelblue")
plot(1:10,sin(1:10) ,type="1")

barplot (c(4,5,2,3,6,4,3))

hist (rt (1000,df=10) ,breaks=30,col="tan")

pie(1:5)

See Figure 9.13 for the result. Notice that for each plot command the next
position in the window is used. The alternative option mfcol will do the same
job, but new plots are added column-wise instead of row-wise.
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Figure 9.13: Plotting several plots in the same window, in this case the plots
are arranged into two rows and three columns.

Another approach is to use the layout function. This allows us to divide the
graphics window into different regions where the plots should appear. Again
we divide into rows and columns, but a plot can occupy several ’cells’. This is
indicated by a matrix, where all cells having the same value makes up a region.
Let us divide the window into 2 rows and 2 columns, but let both cells in the
first row be a region, while the cells of the second row are separate regions. This
means the first plot we add takes up the top half of the window, the next two
plots share the bottom half:

lmat <- matrix(c(1,1,2,3) ,nrow=2,byrow=T)

layout (lmat)

barplot (rnorm (20) ,col="pink")

plot (rnorm (1000) ,rnorm (1000) ,pch=16,cex=0.7)

hist(rchisq(1000,df=10) ,col="thistle" ,border="thistle",
main="")

Have a look at the matrix 1mat in the console, and compare it to the result in
Figure 9.14. Notice how the regions are specified in 1mat and how the plots
appear along the same pattern.
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Figure 9.14: Here we have created regions of different size for the plots, with
one wide region at the top and two smaller below.

9.11 Manipulating axes

At times we would like to put some specific text on the axes, or add extra axes,
to a plot. All this is possible, but it takes some lines of code to do it. Before
we look at the code, let us define some phrases we will meet. An axis is the
‘ruler’ type of line we find at the outer sides of a plot, e.g. in Figure 9.1, where
we have a horizontal axis below and a vertical axis to the left of the markers.
The markings on the axis are called tick marks, and their corresponding texts
are called tick labels. The axis label is the text we may or may not give to the
axis, describing what it measures. Also, the fours sides of a plot are numbered:
Side 1 is the horizontal side below, side 2 is the left hand side, side 3 is on the
top and side 4 is the right hand side.

There are many built-in options we can give to plotting commands to ma-
nipulate the axes and their texts, see ?par for all details on this. Here are
some:
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cex.axis Scaling of the tick labels.
col.axis Coloring of tick labels.
font.axis Font of the tick labels.

las Orientation of tick labels.

tck Length of tick marks. See also tcl.

xaxp How to place the tick marks. See also xaxs.

xaxt Can be used to suppress the plotting of an axis. Important!

A common approach to really manipulating axes is to use the option
xaxt="n" to suppress the plotting of an axis, and then add a new axis using
the function called axis. This function allows you to add a new axis, place it
where you like, and completely specify the tick marks, the tick labels, colors
and anything else you would like to change. Let us have a look at an example.

x.vec <- rnorm(30)

y.vec <- rnorm(30)

plot (x=x.vec,y=y.vec,pch=16,cex=0.75,col="black",
xlim=c(-3,3),xaxt="n",xlab="",
ylim=c(-3,3) ,yaxt="n",ylab="")

This produces a plot completely void of axes. Let us now add a horizontal axis
at the top of the plot.

axis(side=3,at=c(-3,-2,-1,0,1,2,3),
labels=c("This","is","a","silly","set","of","labels"),
col="red")

Notice how we specified side=3 to place it at the top, and how we can completely
specify where to put the tick marks (at) and how to label them (1abels). We
also added color to the axis (col) as well as the tick labels (col.axis). Let us
add another axis to the right

axis(side=4,at=c(-2.5,0,1),labels=c("A","B","C"),
col="green",col.axis="blue",las=2)

By not specifying anything but the side we get an axis just like we usually have:

axis(side=1)
axis(side=2)

Try to run these lines of code, and observe the results. Study the help file 7axis.

When you start to manipulate axes you will soon also need to manipulate
the margins surrounding the plot to make more or less space for tick labels
and axis labels. See the mar option to the par function for how to manipulate
margins. Again the four sides of a plot is numbered clockwise starting at the
bottom.
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9.12 Adding text

You can add a text at any specified location in an existing plot. Here is how:

plot (x=0,y=0,pch=16,col="blue",cex=2)
text (x=0,y=0,labels="The origin",pos=3)

Notice the option pos that directs where to put the text relative to the point
specified. Here we used pos=3 to put the text above the point. You can place
many texts at many positions by using vectors as input to x, y and labels. See
7text for more details.

A legend is a box with some explanatory text added to a plot. The function
legend allows you to do this in a simple way. Here is an example:

t <- seq(from=0,to=10,by=0.1)

s <- sin(t)

c <- cos(t)

plot(t,s,type="1",col="red",lwd=2)

points(t,c,type="1",col="blue",lwd=1)

legend (2.7,0.95,legend=c("Cosine","Sine"),
col=c("blue","red"),lwd=c(1,2),
text.width=1)

The result is shown in Figure 9.15. Notice how we specify the upper left corner
of the box to be located at (2.7,0.95). This must usually be fine-tuned by trial
and error to avoid it from obscuring the lines or markers of the plot.

9.13 Graphics devices

We have so far been plotting in the plot-window of RStudio. If you would like
to have your plot in a separate window this can be achieved by the function X11.
This creates a separate graphics window, and all subsequent plotting command
will now create plots in this window. You can specify several options to X11, e.g.
the width and height to modify the shape of the window, see ?X11 for details.

Other devices can also be invoked. The functions pdf and postscript will
send all subsequent plot to a file (PDF-file or postscript-file). The functions
takes as input the file name, and again width and height can be specified.
Functions like these are typically nice to use when you are preparing plots to
include in reports. You first direct the plotting to a X11 window for inspection.
After you have edited your script to make it look exactly the way you want, you
replace X11 by pdf or something else to produce the graphics file. NB! When
you use devices other than X11, always remember to end the plotting with the
code line dev.off () to close the connection to the graphics device. Files will be
incomplete until the device has been switched off.
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Figure 9.15: A plot with a legend.
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9.14 Important functions

Command Remark

par Can be used to specify a long list of graphics
parameters before plotting

plot,points Basic plotting (scatterplot/lineplot)

hist Histograms

barplot Barplots, for discrete data

pie Piechart, (poor) alternative to barplot

boxplot Alternative to histogram

persp Surfaces

filled.contour Contourplot

colorRampPalette Creates a color function

layout Divides a plot window into panels

axis Adds an axis to a plot

text Adds text to a plot

legend Adds a legend to a plot

X11,pdf,postscript Alternative graphical devices

dev.off Used after plotting to file (e.g. pdf)

9.15 Exercises

9.15.1 Plotting function

Make a function that creates a scatterplot of y versus x, but in addition to this
also put histograms showing the distribution of y and x in the margins. See
Figure 9.16 for an example.

9.15.2 Weather data

We will have a look at the weather data in the file daily.weather.RData again.

Make a script that creates a scatterplot of Air.temp (horizontal axis) against
Air.temp.min (vertical axis). Use round markers with a dark blue color. Then
plot Air.temp against Air.temp.max in the same plot (use points). Use lighter
blue (cyan) triangles. Add texts to the axes. Remember to scale the axes to
make certain all dots fit inside the plot.

The variable Wind.dir indicates the wind direction, and is a categorical vari-
able (8 levels). Make a barplot showing how many days we have observed the
different wind directions in this period. HINT: Use table to count the number
of occurrences. Again, put proper texts on the axes. Which wind directions
are common here at As? Change the barplot to make horizontal bars. Also,
arrange the directions clockwise from North (N,NE,E,SE,S,SW,W ,NW). HINT:
Convert the text variable to a factor where you specify the 8 levels in this order,
then use it as input to table. Add separate colors to each bar.

Make a boxplot showing how Precipitation varies by Month. Make the box-
plot horizontal, and use the three-letter text for each month (e.g. Jan, Feb,...)
instead of numbers as tick labels. HINT: Use the option las to orient labels
properly. What does this boxplot tell you about Precipitation?

If you inspect the data.frame you will see there are many days of missing
observations (NA). If we ignore the three first columns of daily.weather (dates),
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Figure 9.16: A scatter plot with histograms in the margin.

there are 13 columns of weather observations. Let us make a matrix called
Missing, having 13 columns and the same number of rows as daily.weather,
and name the columns as in daily.weather. This matrix should contain only
the values 0 or 1. Fill in a 1 in row i and column j if the corresponding cell
of daily.weather has a missing observation, 0 otherwise. Compute the column
sums (use colSums) and make a barplot of this. Compute the row sums and
make a lineplot of this. Make both plots as two panels in the same plot window.



Chapter 10

Handling texts

R is a tool developed for statistics and data analysis, and computations and
‘number-crunching’ is an essential part of this. However, in many applications
we also need to handle texts. Texts are often part of data sets, as categorical
indicators or as numeric data ’hidden’ in other formats. In the field of bioinfor-
matics the data themselves are texts, either DNA or protein sequences, usually
represented as long texts. Thus, in order to be able to analyze data in general
we should have some knowledge of how to handle texts in an effective way.

10.1 Some basic text functions

Texts can be compared using the comparison operators, just as numbers. Notice
that R is case-sensitive, i.e. "This"=="this" is FALSE since the first letter differ.
The ordering of texts depends on your computers locale, i.e. a computer set up
with Norwegian language may behave different from one with American, etc.
For letters in the English language (a to z and A to Z) there are usually no
surprises, they are sorted in alphabetical order, and lowercase before uppercase.
Symbols outside these letters are more uncertain, check your computer before
assuming anything. A shorter text is sorted before a longer text, if it is a
subtext:

> "Thi"<"This"
[1] TRUE
> "his"<"This"
[1] TRUE

The number of characters in a text is counted by the function nchar:

> nchar ("This is a test")
[1] 14

This function can also take as input a vector of texts, and will return the length
of each in a vector of integers:

> words <- c("This","is","a","test")
> nchar (words)

91
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[1] 4 2 1 4

Notice the difference between length(words) and nchar(words). The first give
you the length of the vector (in this case 4), while the second gives you the
number of characters in each element of the vector.

The functions tolower and toupper will convert to lowercase and uppercase
text, respectively. Again they can take a vector as input, producing a vector as
output:

> toupper (c("This","is","a","test"))
[1] ||THIS|| ||IS|| "A" ||TEST||

10.2 Merging texts

We use the function paste to merge texts. This function can behave differently
depending on the input and the options sep and collapse. Here is an example:

> namel <- c("Lars","Hilde","Thore")

> name2 <- c("Snipen","Vinje","Egeland")

> paste(namel ,name?2)

[1] "Lars Snipen" "Hilde Vinje" "Thore Egeland"

Notice how we gave 2 vectors of texts as input, and got a vector of texts as
output. The first elements are merged with a single space between them, and
similar for all other elements. The sep option specifies the separating symbol
(a single space is the default choice):

> paste(namel,name2,sep="_")
[1] "Lars_Snipen" "Hilde_Vinje" "Thore_Egeland"

If you want no symbol at all, just use sep="" (empty text).

The paste function also takes non-texts as input, and convert them to text
before merging them. It will also circulate vectors, as we have seen before, i.e.
if one of the vectors is shorter than the other, its elements are re-used to make
it long enough. We can use this to our benefit, as shown in this example:

> paste("Observation",1:4,sep=" ")
"Observation 1" "Observation 2" "Observation 3"
"Observation 4"

Here our first input is a single text (vector with 1 element). The second input is
a numeric vector with 4 elements. The first vector is then re-used 4 times. The
second vector is converted to text, and finally they are merged, using a single
space as separator.

If we want to merge all elements in a vector into a single text, we use the
collapse option:
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> paste(namel,collapse="_")
[1] "Lars_Hilde_Thore"

If you want no separator between the elements, again use the empty text:

> Paste(c("A" ,"A" ’IICII ’an ’IITII ,”G" ,"T" ,ncu ,"G" ,"G") ,
collapse="")
[1] "AACGTGTCGG"

10.2.1 Special characters

There are some special characters that we often make use of when constructing
texts. The two most popular are "\t" and "\n". The "\t" is the tab (multi-
space) and "\n" is the newline (linebreak). These characters will affect the
printing of a text, as shown here:

> txtl <- paste(c("This","is","\t","a","test"),collapse="")
> txt2 <- paste(c("This","is","\n","a","test"),collapse="")
> cat(txtl)

Thisis atest

> cat (txt2)

Thisis

atest

10.3 Splitting texts

The function strsplit will split a text into many subtexts. The option split
specifies at which symbol we should split. Here is an example:

> strsplit ("This is a test",split=" ")
[[111]
[1] "This" "isg" ngn "test"

Notice from the output here that it is a list of length 1, having a vector of 4
elements as its content. This function will always output a list. The reason is
that it can split several texts, and since they may split into a different number
of subtexts, the result must be returned as a list. Here is a short example:

> strsplit(c("This is a test","and another test"),split=" ")
[[111

[1] "This" "is" ngn "test"

[[211

[1] "and" "another" "test"
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Both input texts are split, resulting in 4 subtexts in the first case and 3 subtexts
in the second.

Notice also that the splitting symbol (here we used a space " ") has been
removed from the output, only the texts between the splitting symbols are re-
turned.

If we give one single text as input to strsplit, the 'list-wrapping’ is pointless
and we should eliminate it to simplify all further handling of the output. To
do this we use the unlist function. This takes as input a list, and returns the
content of the list after all ’list-wrapping’ has been peeled off:

> unlist(strsplit ("This is a test",split=" "))
[1] "Thig" "ig" ngn "test"

The unlisting of lists should only be done when you are absolutely certain of
what you are doing. It is in general safe to use when the list has 1 element only.
If the list has more than one element it can produce strange and undesired
results.

In many cases the result of strsplit is a list of several elements, and we
should in general not use the unlist function. We will discuss later in this chap-
ter how to deal with lists in an effective way, since many other text-manipulating
functions also produce such lists.

10.4 Extracting subtexts

We can extract a subtext from a longer text by specifying the start and stop
position along the text:

> substring ("This is a test",5,10)
[1] n iS a "

Here we extract character number 5,6,7,8,9 and 10 from the input text. Both
substr and substring will extract subtexts this way, but the latter is slightly
more general, and the one we usually use. Here is an example of how we can
extract different parts of a text in a quick way:

> dna <- "ATGTTCTGATCT"

> starts <- 1:(nchar(dna) -2)

> stops <- 3:(nchar(dna))

> substring(dna,starts,stops)

[1] "ATG" "TGT" "GTT" "TTC" "TCT" "CTG" "TGA" "GAT" "ATC" "
TCT"

The first subtext is from position 1 to 3, the second is from 2 to 4, the third is
from 3 to 5, etc. The function substring will circulate the first argument, since
this is a vector of length 1, while argument two and three are vectors of many
elements. It is possible to provide substring with many input texts, and then
specify equally many starts and stops, extracting different parts of every input
text.



10.5. REGULAR EXPRESSIONS 95

10.5 Regular expressions

A regular expression is a syntax to describe patterns in texts. You will find reg-
ular expressions in many programming languages, and the R syntax is adopted
from Perl. We will first look at some functions using regular expressions, and
then see how to build such expressions.

10.5.1 Functions using regular expressions

The simplest function using regular expression is grep, which is similar to the
one found in UNIX-like operating systems. This function will search for a given
expression in a vector of texts, and output the index of the vector where it finds
the expression. Here is a short example:

> grep(pattern="is",x=c("This","is","a","test"))

(11 1 2

The first argument is the pattern, in this case simply the text "is". The second
argument is the vector of texts in which we want to to search. The pattern
"is" is found in element 1 and 2 of this vector (in "This" and in "is"), and the
output is accordingly.

The grep function does not tell us where in the texts we found the pattern,
just in which elements of the vector it is found. The function regexpr is an
extension to grep in this respect:
> regexpr (pattern="is",text=c("This","is","a","test"))

(11 3 1 -1 -1
attr(,"match.length")
(11 2 2 -1 -1
attr(,"useBytes")

[1] TRUE

The basic output (first line) is a vector of four elements since the second argu-
ment to regexpr also has four elements. It contains the values 3, 1, -1 and -1.
This indicates that in the first text vector element the pattern is found starting
at position 3, in the second text vector element it is found starting position 1
and in the last two text vector elements it is not found (-1).

After the basic output we see attr(,"match.length") and then another vector
of four elements. This is an example of an attribute to a variable. All R variables
can have attributes, i.e. some extra information tagged to them in addition to
the actual content. We have seen how variables can have names, and this is
something similar. In this case the output has two attributes, one called "match
.length" and one called "useBytes". The first indicates how long the pattern
match is in those cases where we have a match. Since our pattern is the text
"is" the "match.length" must always be 2 (or -1 if there are no hits). See ?
regexpr for more on "useBytes". Note that attributes like these are just extra
information attached to the variable, the main content are still the four integers
displayed in the first line.

The function regexpr also has a limitation, it will only locate the first occur-
rence of the pattern in each text. In order to have all occurrences of the pattern
in every text we use gregexpr. Consider the following example:



96 CHAPTER 10. HANDLING TEXTS

> DNA <- c("ATTTCTGTACTG","CCTGTAACTGTC","CATGAATCAA")
> gregexpr (pattern="CT",text=DNA)

[[11]

[1] 5 10

attr(,"match.length")

[11 2 2

attr(,"useBytes")

[1] TRUE

[[2]1]

[1] 2 8

attr (,"match.length")
[11 2 2

attr (,"useBytes")

[1] TRUE

(311

[11 -1
attr(,"match.length")
[1] -1
attr(,"useBytes")

[1] TRUE

We first notice that the output is a list (since we have the double-brackets [[1]]
). The list has the same number of elements as we had in the vector of the second
input argument (three). Each list element contains a result similar to what we
saw for regexpr, but now it is one result for each hit in the corresponding input
text. Like element two, showing that in the second input text "CCTGTAACTGTC"
we find the pattern "CT" at position 2 and 8.

A frequent use of regular expressions is to replace a pattern (subtext) with
some text. The function sub will replace the first occurrence of the pattern,
while gsub replaces all occurrences, and it is this latter we use in most cases.
We can illustrate using the previous example:

> DNA <- c("ATTTCTGTACTG","CCTGTAACTGTC","CATGAATCAA")
> gsub(pattern="CT",replacement="X",x=DNA)
[1] "ATTTXGTAXG" "CXGTAAXGTC" "CATGAATCAA"

The text we use as replacement can be both shorter or longer than the pattern.
In fact, using replacement="" (the empty text) will just remove the pattern
from the texts. Replacing a pattern with nothing (removing) is perhaps the
most frequent use of gsub.

10.5.2 Building patterns

We will only give a very short introduction to regular expressions, as this is
a large topic and not very specific to R. We have so far just used a text as a
pattern, and this is the strictest possible pattern where only exact matching is
allowed. The idea is that we can allow for some degrees of freedom to allow
partial matching.
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Here are some of the frequently used elements of the regular expression
syntax in R:

"AG[AG]GA" The brackets mean either or, i.e. either "A" or "G". This pattern
will match both "AGAGA" and "AGGGA".

"AG[~TC]GA"The ’hat’ inside brackets mean not, i.e. neither "T" nor "C".
This will match the same as above, plus subtexts like "AGXGA"

or "AGOGA".
"AG.GA" The dot is the wildcard symbol in R, and means any symbol.
Be careful with ".", it could make the pattern too

unspecific! (matches everywhere)

"The[a-z]" A range of symbols, here all lower-case English letters.
Other frequently used ranges are "A-Z" and "0-9".

"~This" A ’hat’ starting the expression means matching at the start
of the text only.

"TA[AGI$" A ’dollar’ ending the pattern means matching at the end of
the text only.

"NC[0-9]+" A ’plus’ means the previous symbol or group of symbols can be
matched multiple times. This is typically used to include an
unspecific number in a pattern, i.e. both "NC1" and "NC001526"
will match here.

There are of course many more possibilities, and ?regex will show you the help
file on this. The last example above also shows why we can have matches of
different lengths, hence the need for the "match.lengths" attribute in regexpr
and gregexpr.

10.6 Traversing lists

We have seen that both strsplit and gregexpr give lists as output. Both these
functions are frequently applied to long vectors of texts, and the results will be
long lists. In order to extract the content from these lists we need to traverse
these lists in some way, i.e. loop through them and do something to the content
of each list element. We have previously mentioned how we should try to avoid
explicit looping in R, since this can be slow. Here are some examples of how to
traverse lists by the use of the function-family lapply, sapply and vapply.

These functions typically take as input a list and a function to be applied
to each list-element. This function is something we can make ourselves. Here
is an example where we first use gregexpr on a (long) vector of texts, and then
use sapply to extract the number of hits in each text.

First we make the function to apply:

count .hits <- function(x){
n.hits <- sum(x>0)
return(n.hits)

}

We saw from the example on gregexpr above that each list element it returns
has a vector indicating with positive numbers each hit. If there are no hits, the
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vector contains only the value -1. Thus, the simple sum(x>0) will give us the
number of hits. Notice that we expect the input to this function (x) to be the
content of a list element produced by gregexpr.

After this function has been sourced into the R workspace, we can use it in
sapply:
> DNA <- c("ATTTCTGTACTG","CCTGTAACTGTC","CATGAATCAA")
> 1lst <- gregexpr (pattern="CT",text=DNA)

> sapply(lst,count.hits)
(1] 2 20

The pattern "CT" is found twice in input text one and two, and zero times in
input text three. The function sapply loops through the list, sending the content
of each list element as input to the provided function count.hits. This function
returns exactly one integer for each list element, and then sapply outputs these
results as a vector of integers.

Notice that the output from sapply is a vector, not a list. This makes it
possible to extract something (depending on the function you apply) from each
list element, and put the result into a vector. This of course requires that
one quantity or text is extracted from every list element, regardless of what it
contains.

10.6.1 In-line functions

In real R programs the code is often shortened compared to the version we have
shown here. In fact, the creation of the function to apply can be done in line
directly as you call sapply, like this:

> sapply(gregexpr (pattern="CT",text=DNA),
function(x) {sum(x>0)})
[1] 2 2 0

Notice how the in-line function has no name, it exists only during the call to
sapply. This way of writing R code makes programs less readable for newcomers.
The detailed version above is easier to understand, but this latter approach is
something you will meet in real life.

10.7 Example: Reading many files

Often we want to read data from many different files. This can be cumbersome
and time-consuming to do manually. Instead we make a script that reads the
files, one by one.

10.7.1 Systematic filenames

Sometimes the filenames follow some system, and then we can easily re-construct
the filenames in R. Let us assume we want to read the files Data10.txt, Data20
.txt, Data30.txt,...,.Datal110.txt, Data120.txt. Each file is a formatted text-file,
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and we can read them all by the same call to read.table, we only need to change
the filename each time.

We then make a for-loop going from 10 to 120 by step 10, and use the
paste-function to create the names:

for(k in seq(from=10,to0=120,by=10)){
fname <- paste("Data",k,".txt",sep="")
dta <- read.table(fname) #additional options to read.table
may be needed
#extract what you need from dta before next iteration
#because then dta will be over-written...

Actually, it is often a good idea to first read one file, and then create the data
structures you need to store whatever you want from the file. Then you proceed
with the loop (starting at the second file) and read the files, adding their content
to the existing data structure.

10.7.2 Listing folder content

Sometimes the files have no systematic name. Let us say we have the data files
in the folder C:\Download\Data. In this folder we have some formatted data-files,
and the only common about their names are they all end with the extension
.txt. The folder also contains many other files, with different extensions.

The function dir in R will list all files and subfolders in a given folder. If
you in the Console window just type

> dir )

you will get listed all files and folders in the current working directory. By spec-
ifying a folder, e.g. dir("C:/Download/Data") the function returns a text-vector
containing the names of all files and folders in C:\Download\Data. NOTE! In
R we use the slash (/) but in Windows we use the backslash (\) when speci-
fying a path. Here are some lines that indicates how to read the data-files in
C:\Download\Data:

all.files <- dir("C:/Download/Data")
idx <- grep("txt$",all.files) #use regular expression to
#locate the txt-files
data.files <- all.files[idx]
for (fname in data.files){
dta <- read.table(fname)
#extract what you need from dta before next iteration
#because then dta will be over-written...

Notice that we used grep to select only the filenames ending with .txt. In some
cases this is not enough, there may be many .txt-files, and we only want to
read some of them. Then we need to make another grep where we look for some
pattern found only in the names of those files we seek.
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10.8 Important functions

Command Remark

nchar Number of characters in a text (vector)
toupper,tolower  Converting text to uppercase/lowercase

paste Merging texts

strsplit Splitting texts

unlist Removes the list-property of a list, if possible
substring,substr Retrieves a sub-text from a text

grep Search with a regular expression in a text (vector)
regexpr Finds position of first occurrence of a regular expression
gregexpr Finds position of all occurrences of a regular expression
gsub Replacing a regular expression with text

sapply Applies a function to elements in a list

dir Lists folder content

10.9 Exercises

10.9.1 Poetry

Can R understand poetry? Well, at least we can make R-programs recognize
poetry to some degree. We will pursue this exercise when we come to modelling
in later chapters.

In the file poem_unknown.txt you find a poem written by some unknown
author. According to some expert in English literature the author of this poem
is very likely to be either Shakespeare, Blake or Eliot. To investigate this, we
need to convert this poem into a 'numerical fingerprint’.

Make a script that reads the file poem_unknown.txt line by line using the
readLine function from chapter 6. Also, load the file called symbols.RData. This
creates the vector symbols in your workspace. This vector has 30 elements, all
single character texts.

Make a function called poem2num that takes as input a vector of symbols, like
symbols and a poem (text vector). The function should return the number of
occurrences of each of the symbols in the poem. Remember to convert all text
in the poem to lower-case. Use the poem and the symbols from above to test
the function. It should return a vector of 30 integers. This is our (simplistic)
version of the poems numerical fingerprint.

10.9.2 Dates

In the weather data we have seen each date is registered by its Day, Month and
Year as three integers. In the raw data files this was not the case. Most years
the date is given like "01.01.2001" (day-month-year). Typically, the format has
changed over the years, and in some cases the year is only written with the last
two digits, e.g. "01.01.93" for 1. January 1993. In some years the format is
"01011998" (no dots). It is quite typical that rawdata are messy like this, and
some kind of programming is needed to get it all into identical formats.

Make a function that takes as input texts like all the three mentioned above,
and extracts the date as three integers, Day, Month and Year, and return these
in a vector of length 3. The year must be the 4-digit integer (1993, not just
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93). It means the function should recognize these three formats, and behave
accordingly.
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Chapter 11

Packages

11.1 What is a package?

We can think of a package in R as a bundle of R-functions, data files, documen-
tation files and possibly some external (non-R) programs that we can install on
our computer to extend the basic capabilities of R. The idea behind this is to
make it easy to write extensions to R, and share these within a user community.
When you install R you do not install a huge monolithic program. Instead, you
install a basic tool-set that can be extended and specialized in various ways. As
you become more familiar with R you may want some more tools. Often you
will find that others have made these tools already, or at least something quite
close to what you need. If these are provided in an R package, you can easily
import them, and use them or modify them according to your need.

We will see below how easy it is to import code from others through packages.
We will also have a brief look at how we could create our own package, for sharing
with others.

11.2 Default packages

When you install R you also install the base package. This contains the most
basic functions in R, functions you simply cannot do without. In a default
installation you also get a number of other packages. These packages have been
considered by the R core team to be so essential that any installation of R should
have them. If you start RStudio, and locate the Package-vane in one of your
panes, you will get a list of all installed packages on your system.

If you click on the name of some package, you should be taken to the docu-
mentation for that package. This documentation may vary slightly from package
to package, there are some degrees of freedom in how much and how detailed a
package must be documented. First, there should be a DESCRIPTION file, a
short text file containing some very basic description. You may for some pack-
ages also find a link to what is called a vignette as well as a users guide. Both
these (if supplied) are longer descriptions or user guides usually worth reading.
Next, you should expect to see a list of all functions and all data sets in the
package. By clicking these you are taken to the Help-files for each function/data
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set. These are the same Help-files you see if you type ? and the function name
in the Console window.

11.3 Where to look for packages?

The official repository for R-packages is the Comprehensive R Archive Network
(CRAN, see http://cran.r-project.org/). By default R is set up to look for
packages at CRAN. CRAN has many mirror-sites around the world with the
same content. Packages found at CRAN have passed a quality-check and are
regarded as safe with respect to virus and other problems.

Since R has grown to be so popular, there are now many other sites on
the internet providing huge amounts of R-packages. The R-forge (https://
r-forge.r-project.org/) is a website where you can store and share your
R-packages. If many people work together to build the same package, sites like
this are used for version control, i.e. all developers work on a copy of the original
package, and new versions are uploaded and downloaded from this central site.
Packages developed at R-forge may be open for anyone to download and install.
These packages do not have the same quality-control as the CRAN-packages.

Another popular site for obtaining R-packages related to computational biol-
ogy is the Bioconductor (http://www.bioconductor.org/). This site provides
its own installation-function (called biocLite()) that you use to install packages
from their site. We will have a look at this below.

R is already used in many scientific fields, and is still expanding, which
means I have no overview of all these communities. There are most likely many
R-sites you will find useful that I have never even heard of!

11.4 Installing packages

The basic way of installing a package in R is to use the function install.
packages(). This can be used directly in the Console window, but as long as
we use RStudio we might just as well invoke it from the menu: From the menu
select Tools and then Install Packages.... A small window should pop up. In
this window you first select from where you install the package. By default there
should be two choices: Either directly from CRAN or from some archive-file that
you have downloaded.

11.4.1 Installing from CRAN

Let us install the package called pls from the CRAN. Needless to say, you must
have an internet connection to do this! Select the CRAN in the Install from
field. You may also need to select which mirror site to use (select the Norwegian
site when in Norway).

Start typing the name of the package in the next field. RStudio will show
you all available packages fitting with the name you type.

Next, there is a pop-up menu for selecting the library (Install into Library).
A library is, in this context, just a directory on your system where R will install
packages. When you install R, the default directory is selected, and in many
cases this is fine. See ?Startup for more Help on this. Let us use the default
choice for now.
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Finally, there is a check-box where you can decide to install dependencies.
Many packages need other packages to work properly, and if these are not al-
ready in your system they will also be installed if you tick this box. Usually
this is a good idea.

Click the Install button, and the package, along with any dependencies, are
installed. This may take some time since we need to first download from CRAN
and then unpack and also possibly compile some code. If the installation was
successful, the package pls should now appear on your list of packages in the
Package-vane.

11.4.2 Installing from file

On R-forge there is a project called The forensim package (see under Projects-
Project Tree-Bioinformatics-Statistics). We happen to know the people behind
this project, and we feel safe downloading this package. From the project site we
click on the R Packages menu, and download the zip-archive (or tar.gz archive).
We should now have the file forensim_4.3.zip (or forensim_4.3.tar.gz) in our
Download-folder.

Again we use the Tools and Install Packages... in RStudio, but instead of
CRAN we select to install from a Package Archive File. Browse to locate the
archive in your Download-folder, and install the package. This package depends
on another package called tkrplot, and unless you have this in your system the
installation will fail. This package can be installed from CRAN. Install tkrplot
in the same way as you did for the pls package above, and then repeat the
installation of the forensim package.

11.4.3 Installing from the Bioconductor

As mentioned above, the Bioconductor has its own installation script. Let us
show how we use it. We want the package called bioDist from the Bioconduc-
tore. Then we type the following directly in the console window:

> source("http://bioconductor.org/biocLite.R")
> biocLite("bioDist")

and the package is installed!

11.5 Loading packages

You only install a package once on your computer. However, the package is not
available for use in an R session yet. You always need to load the package before
you can use it, and this must be done once in every R session. You typically
load a package by the statement

library (pls)

where the keyword library is used to load the pls package. You can also use
require in the same way.
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If T make a script where I know that I will use some functions from a certain
package, I always make certain the required library statements are entered at
the start of the script. This guarantees that the packages I need have been
loaded before the functions are being used later in the script. You do not need
to load the package more than once, but there are no problems executing the
library statement repeatedly, it is just ignored by the system if the packages
has already been loaded.

In the Package-vane in RStudio all currently loaded packages have their
check-box ticked.

11.6 Building packages

In this course we will only have a very brief look at how to create an R-package.
The reason is of course that most package developers need more experience in
R programming. On the other hand, it is nice to have seen this once at an early
stage in order to understand a little bit more about packages. Also, in RStudio
it is very simple to get started creating packages.

Before you start building packages in Windows, you need to install the Rtools
that you find on the same web-page as R itself, see http://cran.r-project.
org/

11.6.1 Without RStudio

There are some built-in functions in R that can help you creating a package.
More specifically, the function package.skeleton will be helpful. There is also
a huge documentation about how to create R packages, see the link Writing R
Extensions in the main R Help window.

11.6.2 Using RStudio

In this brief example we will use the facilities in the current version of RStudio
(ver 0.98.501). Any package you create must have its own directory somewhere
on your computer. The name of the package is the name of this directory. In
such a package-directory we must put certain files and subdirectories that R
require to turn this into a package. We will use RStudio to create this structure
for us.

From the File menu, select New Project.... A small window should pop
up. Select to create the project in a New Directory. In the next window, select
R Package. In the final window you need to give the package a name, and
also select where in your file-tree the package should reside. Press the Create
Project button, and the directory is created, along with all the required files
and subdirectories.

If you have a look at the Files-vane in RStudio, you should now see the
package-directory content. There will typically be two files called DESCRIPTION

and NAMESPACE. There are also typically two subdirectories called R and man.
There will also be some other files, at least one with the extension .proj which is
something RStudio adds to any Project-folder. If you want to open an existing
Project (package or something else) in RStudio, this is the file you look for.
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The R subdirectory

This is where you put all R-programs of the package. All functions in the
package must be defined in files with the .R extension and put into this directory.
Nothing else should be added to this subdirectory.

The man subdirectory

This is where you put all the Help-files. A huge part of any package development
is to create the Help-files required for every function and every data set in the
package. The Help-files must all follow a certain format. In RStudio we can
create a skeleton for a Help-file from the File menu. Select New File, but instead
of choosing R Script as before, we scroll down to the Rd File option. A small
window pops up asking for the Topic. This is usually the name of the function
that we want to document. Type in the name, and a file is created containing
the skeleton for an R documentation file. You will recognize most of the sections
from any Help-file in R. Filling in files like these is a significant job in every R
package development. In the man directory there will typically be one such file
for each function, but in some cases (as we have seen) very related functions
may be documented within the same file.

Other subdirectories

We may add other subdirectories to our package-directory, but there are some
rules we must obey. If the package contains data these are usually saved in
.RData files (using the save() function, see chapter 6). Such files should be
placed in a subdirectory called data. Such data sets can be accessed by the
function data() once the package has been loaded. If we have loaded a package
containing the data set named daily.weather.RData, we can load it by

> data(daily.weather)

We can also have subdirectories for other types of data, for external (non-R)
programs etc, but you will have to read about them from sources outside this
text.

11.6.3 How to create the package archive?

Once we have written all the R-programs, written all Help-files, created data
files and other thing belonging to our package, we must bundle this all together
to form a package archive that we share with the rest of the world.

If you have the package-project open in RStudio there should now be a
Build-vane that give you the tools required. The Build & Reload button will
"build’ the package and load it in your currently running R session. This is nice
for quickly checking that things work as they should during development.

Once you are ready to deploy your code, you can choose the More pop-up
and select Build Source Package. This should result in an archive file in the
parent-directory of your package-directory.
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11.7 Important functions

Command Remark

install.packages Installs packages

library,require  Loads a package

package.skeleton Creates a folder with package structure
data Loads data available in a (loaded) package

11.8 Exercises

11.8.1 Imputation of data

Larger data sets will often have some missing data, for various reasons. If we
want to apply some multivariate statistical methods to our data, these will in
general not tolerate missing data. Think of the data set as a data.frame or
matrix. If the data in cell [i,3j] is missing we must either discard the entire
column j, the entire row i or impute the value in this cell. The latter means
finding some realistic and non-controversial value to use in this cell.

Load the matrix in the file weather.matrix.RData. This is a small subset of
the weather data we have seen before. It is a matrix (not data.frame!) with 5
columns and 22 rows. Notice that column 3 (Humidity) has two missing data
(NA).

Imputation by the mean

It is not uncommon to impute missing data by the mean value of the variable.
Do this by computing the mean of the Humidity-column (ignore the NA’s).
Both missing cells will then get this value. This procedure will work fine if the
variable Humidity has the exact same expected value for all days (rows), and the
only contribution to variation is a completely random day-to-day fluctuation.
If this is the case, the imputation by the mean makes sense.

Imputation by KNN

However, the assumption that the only contribution to variation is a completely
random day-to-day fluctuation seems too severe. It is reasonable to assume that
Humidity varies systematically and not at random, by how the other weather
variables behave, at least to some degree. For instance, on a rainy day (much
Precipitation) it is reasonable to assume that the Humidity should be quite
high compared to a clear day. Notice that other weather variables have been
observed on those days where Humidity is missing, and we should make use of
this information.

The K-nearest-neighbour (KNN) imputation method uses the values for the
other variables to find the most likely missing values, i.e. based on the values
for Air.temp, Soil.temp.10, Precipitation and Wind, find other days in the data
set with similar values, and use the Humidity for those days to compute the
imputation value (e.g. the mean of these Humidity-values).

In the Bioconductor package impute you find a function for doing this. Install
the package, load it and read the Help-file for the function impute.knn. This
has been purpose-made for gene expression data, but any matrix can be used
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actually. Use impute.knn to impute the two missing data in weather.matrix
HINT: By default impute.knn uses k=10 neighbours, try to use k=3 instead
(since our data set is small).

11.8.2 Making a package

We will create a small R-package around the weather data set we have seen
in previous exercises. The package will contain this data set and some related
functions.

First, create a new project with an R-package, as described above. Add
a new directory named data to the package-directory, and put daily.weather.
RData (from previous exercises) in this subdirectory. In the R subdirectory we
will have a function named plotTrends. Create the file with this function:

plotTrends <- function (dwd){
month <- c("Jan","Feb","Mar","Apr","May","Jun","Jul",
"Aug","Sep","Oct","Nov","Dec" )
par (mfrow=c(3,4))
for(m in 1:12){
idx <- which(dwd$Month==m)
y <- tapply(dwd$Air.temp[idx],dwd$Year [idx] ,mean,
na.rm=T)
x <- as.integer (names(y))
plot(x,y,pch=16,cex=1,col="cyan",xlab="",
ylab="Temperature" ,main=month [m])
1fit <- loess(y~x)
y.hat <- predict(lfit)
points(x,y.hat,type="1",1lwd=2,col="blue")

Create Help-files for the function plotTrends above, as well as the data set in
daily.weather.RData. Save these in the man subdirectory.

Build and load the package, first locally in RStudio and then build the
package-archive.
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Chapter 12

Data modeling basics

By data modelling we mean the process of finding trends, relations or pat-
terns in data. This is the setting for many data analysis problems. Often we
want to predict the value or outcome of some variable given some observations
of some other, hopefully related, quantities. In many cases the predictions are
themselves a goal, but just as often it is the relation between variables we are in-
terested in, and the ability to make good predictions (small errors) is a criterion
for finding the 'real’ relations. In this chapter we will consider some modelling
situations, and see how we can approach these using simple R programming.

In this chapter we introduce some simple regression and classification meth-
ods. The focus is on how to use R for performing such analyses, and we will
not dig into the theory behind these methods. We actually assume you have
some basic knowledge of this from previously. The free book An Introduction
to Statistical Learning (AISL) is a very good text for those who want to repeat
some of the basic theory behind regression and classification methods. It also
gives a number of motivating examples, and has separate sections introducing
the same basic R functions as below. We recommend that you take a look at
the first 4-5 chapters of AISL together with this chapter.

12.1 Data sets

The data sets we will consider in this chapter are all of the type that could be
stored in a data.frame. More specifically, when we talk of data variables we can
think of columns in a data.frame. The variables we will consider are of two data
types: Either numeric (or integer) or factor. When it comes to actual computa-
tions, the variables of interest are often retrieved from the data.frame and put
into a matrix, since matrix is the desired input format to many functions.

12.1.1 Explanatory and response variables

It is customary to distinguish between explanatory variables and the response
variable. In the prediction problem, the explanatory variables are those we
have observed while the response variable is the one we want to predict, based
on the observed explanatory variables. We may have one or more explanatory
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variables. In this course we will only consider problems with a single response
variable.

By convention, the explanatory variables are stored in a matrix named X
in statistical literature. If we have all data in a data.frame named D, and we
want to use columns 1 and 3 as explanatory variables, we can think of X as

X <- as.matrix(D[,c(1,3)])

It is also a similar convention to name the response variable y. We can think of
y as a column-vector, i.e. if we want to use column 2 in D as response it means

y <- D[,2]

It should be noticed that as long as we use the basic functions in R introduced
below, we never explicitly create neither X nor y since the function are built to
extract them directly from the data.frame (D). But, we should at least imagine
both X and y could have been created like above, it is part of the statistical
language. In the book AISL you will find the same symbols.

Notice that the distinction between explanatory and response variables is
purely operational. In one problem a certain variable may be the response,
but in another the same variable can be among the explanatory variables. The
data.frame D exists as a passive data source in the background, and we extract
and use the variables we need depending on the problem.

12.1.2 Objects and variables

For all variables we have sampled a set of values, and if we also include the
occasional missing value, all variables have the same number of samples. A
data object refers to a row in the matrix X, i.e. data object i is X[i,] =
(X[, 1], ..., X[¢,p]). Sometimes data objects also include the corresponding value
of y, i.e. data object i is (y[é], X[i,]). It will (hopefully) be clear from the context
whether the y-values are included or not.

Where does the word ’object’ come from in this context? Traditionally, a
data table is arranged such that columns (variables) correspond to properties
and the rows correspond to some observed object. We have previously seen (and
will see below) the bear data set. Each column in the data.frame are properties
of bears (weight, length, gender, etc.), and each row is a new bear. In the
weather data set we have seen each column is a property of a day (temperatures,
wind, radiation etc.) and in each row we list the observation for each day. The
bears or the days are the ’objects’ we observe.

By convention, the number of data objects (rows in X) is named n, while
the number of explanatory variables (columns in X) is named p.

12.1.3 Training and test data

In all modelling situations we can also divide the data set into what we call the
training set and the test set. The training set are the data objects we use to
fit our models, i.e. we use these data to learn from, and train our method to
behave as good as possible. We often denote this data set (yirain, Xtrain). In
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the training set the values of the response ¥irqin is always known. When we
talk about the number of objects n we usually refer to the number of objects in
the training set only.

The test set consists of the data objects (ytest, Xtest), which are different
observations of the same variables as in the training set. In principle the response
Ytest 1S missing/unobserved in this case, and we want to find it. We have the
observed data in X;.4:, and based on the model we trained on the training data,
we want to combine this with X;.s to predict the values of ysest-

Both data sets are sampled from the same population, i.e. any relation that
holds between Xiqin and yg-qin should also hold between Xies: and yiess, and
vice versa. Think of them as two subsets of the same data.frame.

In some cases the values of y;.s: are also known. We then pretend they are
not, and predict them as if they were indeed missing. Then we can compare this
prediction to the true values of ys.s;. This is a valuable exercise for evaluating
the ability of a model to make good predictions, as we will see below.

The distinction between training data and test data is again purely opera-
tional, i.e. data objects used in the training set can in another exercise be used
in the test set, and vice versa. In some cases the training data and test data
are identical, i.e. we use the same data for both purposes. This is possible, but
then we have to remember that the ’predictions’ of y;.s; are no longer actual
predictions, since the same data were used for training as well.

12.2 Regression

Let us repeat the regression idea for a very simple data set. In Chapter 6 we
met a data set on bears, in the file called bears.txt. This data.frame contains
some measurements made on 24 different bears. More specifically, there is a
variable named Weight, which is the body weight of each bear. Weighing a bear
can be quite cumbersome (and dangerous?), and it would be very nice if we
could predict the weight of a bear from its body length. Measuring the length
of a bear is, after all, much easier. Hence, we want to predict Weight based on
some observed value of Length. We consider only these two variables from the
data set, and the response variable y is the Weight and the only explanatory
variable in X (which means p = 1) is Length. Notice that both variables are
continuous, i.e. they may take any numerical value within a reasonable range
of values.

We first use all n = 24 data objects as training data, and we will split into
training and test data later. First, we read the data into R:

beardata <- read.table(file="bears.txt",header=TRUE)

12.2.1 Simple linear regression

In general, if we have some response variable y;.q4;n and a single explanatory
variable in X¢,4in the linear regression model assumes

Ytrain = ﬁ[l] + Xtrain : ﬁ[2] +e (121)
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where [1] and [2] are unknown coefficients and e is some noise or error term.
We usually refer to [1] as the intercept and S3[2] as the slope. The simple
formula B[1] + XtrainB[2] describes a straight line, i.e. our model says that the
relation between Xypqin and yirqin is a linear relation. This means that if we
had no noise (if e was absent) we could have plotted yrqin against Xypqin and
found all points on the same straight line. For real data there are always some
deviations from the straight line, and this we assume is due to the random term
e. The basic step of the data modelling is to find proper values for §[1] and
B[2], i.e. to estimate these unknown coefficients from data. This is the training
step.
In our case we now use the column Weight as y4,qin and Length as Xypqin-

12.2.2 Fitting a linear model using in

We will not go into any details on the theory of estimation, these are topics in
other statistics courses. Fitting the above linear model to data can be done by
the function 1m in R.

fitted.mod <- 1lm(Weight“Length,data=beardata)

The construction Weight~Length is a notation we see sometimes in R. It is what
we call a formula. It simply means that the variable to the left of the ~ is
the response variable to be related to the variables to the right of the ~. It is
another way of writing the formula from (12.1). Notice that we did not write
beardata$Weight and beardata$length here (we could have). The 1m function
has an option data where we can specify the name of the data.frame we refer
to, and if we do this we can use the column names in the formula. Read about
formulas in R (?formula), they are quite common in many R applications.

In Figure 12.1 we have displayed the data as well as the estimated regression
line, i.e. the straight line relation corresponding to the estimates above. From
Figure 12.1 we would say the fitted model is not very good. The slope is positive,
which is fine, a longer bear should also mean a heavier bear, but the intercept
is nonsense. Notice that a bear of 100 centimeters is predicted to weigh almost
nothing, and even negative predictions of weights for very short bears! There
are potentials for improvements here!
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Figure 12.1: A scatter plot of Weight versus Length from the bears data set.
Each marker corresponds to an object, having one Weight-value and one Length-
value. The straight line is the fitted linear regression line, see the text for the
details.

12.2.3 The lm-object

The function 1m returns something we can call an Im-object. The function class
tells us this:

> class(fitted.mod)
[1] nlmn

We can think of this as an ordinary list, but with some added properties. For
those familiar with object oriented programming, we would say that the Im-
object has inherited list. The summary function can take an lm-object as input,
and produce some helpful print-out:



116

> summary(fitted.mod)

Call:
Im(formula = Weight ~
Residuals:

Min
-64.76

1Q Median
-26.78 -9.42

Coefficients:
Estimate
-212.8522
2.1158

(Intercept)
Length

codes: 0
0.1

Signif.

Residual standard error:
0.6895,
48.85 on 1 and 22 DF,

Multiple R-squared:
F-statistic:

CHAPTER 12. DATA MODELING BASICS

Length, data = beardata)
3Q Max
30.74 80.67
Std. Error t value Pr(>|tl)

Adjusted R-squared:
p-value:

.05

47.2818 -4.502 0.000177 ***
0.3027 6.989 5.15e-07 *xx
* 0k x 0.001 * % 0.01
1

40.1 on 22 degrees of freedom

0.6754

5.147e-07

In the Coefficients section of this print-out we find some t-test results for each
of the coefficients of the model. These tests are frequently made to see if the
explanatory variables have a significant impact on the response variable. In
this particular case we would be interested in the null-hypothesis Hy : §[2] = 0
versus Hy : B[2] # 0. If Hp is true it means Length has no linear relation to
Weight. The print-out row starting with Length displays the result for this test.
Clearly the p-value (Pr(>1tl)) is small (5.15-1077), and there is a significant

relation.

Another useful function for Im-objects is anova:

> anova(fitted.mod)

Analysis of Variance Table

Response: Weight

Df Sum Sq Mean Sq F value
48.85 5.147e-07 **x*

Length 1
Residuals 22

78560
35380

codes: 0
0.1

Signif.

78560

1608

* % %

Pr (>F)

0.001 * % 0.01

.05

In this case we perform an F-test on the overall fit of the model. Read about

this test in AISL.

We can also inspect the lm-object as if it was a straightforward list. First

we take a look inside:

> names (fitted.mod)
[1]
[5]
[9]

"coefficients"
"fitted.values"

"xlevels" "call"

"residuals"
"assign"
"terms"

"effects" "rank"
"qr" "df.residual"
"model"
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There is one variable named coefficients, and to retrieve these estimates we
type
> fitted.mod$coefficients

(Intercept) Length
-212.852240 2.115778

We can also retrieve the fitted values, and use these to plot the fitted line.
Here is the code that produced the plot in Figure 12.1:

attach(beardata) # Read in 7attach to repeat...
plot (Length ,Weight ,pch=16,cex=1.5,xlab="Length (cm)",
ylab="Weight (kg)",ylim=c(-20,250))
points (Length ,fitted.mod$fitted.values,type="1",1lwd=2,
col="brown")
# Alternative to two last lines above:
#abline(fitted.mod,col="red",lwd=1.5)

The residuals are the differences between observed Weight and predicted
Weight (the straight line). We often plot the residuals versus the explanatory
variables, to see if there are any systematic deviations. Remember, the assump-
tion of the linear model is that all deviations from the straight line are due to
random noise. We can plot the residuals by:

residuals <- fitted.mod$residuals

plot (Length,residuals ,pch=16,xlab="Length (cm)",
ylab="Residual (kg)")

points(range (Length) ,c(0,0) ,type="1",1ty=2,col="gray")

As seen in Figure 12.2 there is a tendency that the residuals are negative for
medium Length values, and positive at each end. This indicates the assumptions
of the linear model are too simple, and in this case it is the linear relation
between that Length and Weight that is too simple.

12.2.4 Making predictions

One important motivation for statistical modeling is to make predictions. As-
sume we have observed a new bear, and found that its length is 120 cm. This is
a test set data object Xyesr = 120. What is this bears weight? Our prediction
of this, based on the existing model, would be

Grest = B[] + B[2] - Xpest = —212.9 + 2.116 - 120 = 41.02 (12.2)
where the " indicates estimated values. In R we make predictions based on an
Im-object by the function predict:

new.bear <- data.frame(Length=120)
Weight .predicted <- predict(object=fitted.mod,
newdata=new.bear)
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Figure 12.2: A scatter plot of the residuals versus Length.

Notice that predict takes as input the fitted model and a data.frame with the
test set data objects. This data.frame must contain the same column names as
we used in the model, in our case Length. You can have data for as many new
data objects (bears) you like, and predict will compute the predicted y-value
(Weight) for each.

12.2.5 Multiple linear regression

As we have already concluded, predicting bear weight from bear length in a
simple linear model does not give very good predictions. We need to extend
the model in some way, because the residual plot tells us there are systematic
variations in weight that our model ignores. One obvious way of extending the
simple linear model is to include more than one explanatory variable. If we have
multiple explanatory variable we refer to this as multiple linear regression.
One extension is to add higher order terms to the model, e.g. a second order
term of the single explanatory variable we have used so far. The general model
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would then look like
Ytrain = 6[1] + Xtrain[v 1] . 6[2] + Xtrain[a 2] . /8[3] +e (123)

where the matrix Xy,.q;n, now has two columns. The second column is just the
first column squared. Using the bear data again, let us create a new data.frame
containing only the variables of interest:

beardata2 <- beardatal[,1:2] #retrieving Weight and Length
beardata2$Length.Sq <- (beardata2$Length) "2 #adding Length~2

The first 5 rows of this data.frame now looks like this:

> head(beardata2)
Weight Length Length.Sq

1 38 114 12996
2 41 121 14641
3 47 135 18225
4 201 171 29241
5 243 183 33489
6 204 183 33489

We can fit a new model including the second order term like this

fitted.mod2 <- Im(Weight“Length+Length.Sq,data=beardata?2)

If you run a summary on this object, you will see the second order term is highly
significant. Notice also that the first order coefficient 2] has changed its sign!
It is in general difficult to interpret coefficients as soon as you add second (or
higher) order terms.

In Figure 12.3 we have plotted the fitted values as we did before, and it
seems clear this model gives a better description of how weight is related to
length. It is no longer a straight line, due to the second order term, and here
are the lines of code we used to create this plot:

attach(beardata2)
plot (Length ,Weight ,pch=16,cex=1.5,xlab="Length (cm)",
ylab="Weight (kg)",ylim=c(-20,250))
idx <- order(Length)
points(Length[idx],fitted.mod2$fitted.values[idx], type="1",
lwd=2,col="brown")

Notice the use of the function order. This gives us an index vector that when
applied to Length will arrange its elements into ascending order. When making
a line-plot, the values along the x-axis must be in ascendig order, otherwise the
line will cross back and forth, making it look like a spiders web! Try to make a
plot of the residuals of this model versus Length.

Instead of using a higher order term, we could of course have used some of
the other variables in the original data set in our model. The variable Chest.G
(chest girth) measures how ’fat’ the bear is. Together with Length this says
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Figure 12.3: The fit of the model that includes a second order term of Length.

something about the size of the bear. Think of a cylinder, its volume is given
by
V=n-r>h (12.4)

where r is the radius and h is the height (length) of the cylinder. Imagine a
bear standing up, and visualize a cylinder where this bear just fits inside. Then
Length is the height A and Chest.G is 7 - 2r. Thus, the term Length*Chest.G

should come close to describing the volume of this cylinder, and the bear’s
volume is some fraction of this. If we can (almost) compute the bear’s volume,
the weights is just a matter of scaling. Thus we try the model

volume .mod <- Ilm(Weight " Length+Chest.G+Length*Chest.G,
data=beardata)

Run the anova on volume.mod and compare it to similar outcome for fitted.mod
and fitted.mod2 from above. In Figure 12.4 we have plotted how the 'volume
model’ fits the data. Here is the code that produced this plot:
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Figure 12.4: The fit of the model that includes both Length and Chest.G,
referred to as the 'volume model’ in the text. Here we have displayed the fit in
two panels, once against Length and once against Chest.G.

attach(beardata)
par (mfrow=c(1,2))
plot (Length ,Weight ,pch=16,cex=1.5,xlab="Length (cm)",
ylab="Weight (kg)",ylim=c(0,250))
W.predicted <- volume.mod$fitted.values
idx <- order (Length)
points (Length[idx] ,W.predicted [idx],type="1",1lwd=2,
col="brown")
plot (Chest.G,Weight ,pch=16,cex=1.5,ylim=c(0,250),
xlab="Chest girth (cm)",ylab="Weight (kg)")
idx <- order(Chest.G)
points (Chest.G[idx],W.predicted[idx],type="1",1wd=2,
col="brown")

12.2.6 Regression with factors

So far we have only used numerical variables in our model. A regression model
can also have factors among its explanatory variables (not in the response!).
In the bears data set there is one factor variable, the Gender. As long as we
use the Im() function, factors can be included in the model in the same way
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as a numerical variable. Let us illustrate
predict Weight:
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this, by using a Length and Gender to

gender .modl <- 1lm(Weight~ Length+Gender ,data=beardata)

If we run summary on this fitted model we get

> summary (gender .mod1l)

Call:
Im(formula = Weight Length + Gender, data = beardata)
Residuals:
Min 1Q Median 3Q Max
-53.861 -26.893 2.048 14.629 70.982
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -206.000 43.496 -4.736 0.000112 **x*
Length 1.935 0.289 6.695 1.26e-06 **x*
GenderM 35.882 15.854 2.263 0.034333 x*
Signif. codes: 0 * ok % 0.001 *x 0.01 * 0.05
0.1 1
Residual standard error: 36.8 on 21 degrees of freedom
Multiple R-squared: 0.7504, Adjusted R-squared: 0.7266

F-statistic:

31.56 on 2 and 21 DF,

p-value: 4.693e-07

Notice that GenderM is listed as a ’variable’. The 1m function will consider level
1, F, of the factor as the 'default’ level. The estimated intercept and effect of
Length applies to bears of type F. The estimated value for GenderM is added effect
of level M, i.e. if a male and a female bear has the exact same Length, the male
bear is predicted to weigh 38.882 kilograms more. The following code produces

the plot in Figure 12.5.

attach(beardata)

plot (Length ,Weight ,pch=16,cex=1.5,xlab="Length (cm)",

ylab="Weight (kg)",ylim=c (-

20,250))

Weight .predicted <- gender .modl$fitted.values

is.female <- (Gender=="F")
points (Length[is.female],Weight.

predicted[is.female],

type="1",col="magenta",lwd=2)
points(Length[!is.female],Weight.predicted[!is.female],
type="1",col="cyan",lwd=2)

We can of course include interaction terms as well, i.e. higher order terms
where we mix numerical and factor variables. The following model

gender .mod2 <- 1lm(Weight " Length+Gender+Length*Gender,

data=beardata)
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Figure 12.5: The fit of the model where Gender has an additive effect. The
magenta line applies to female bears, the cyan line to male bears.

includes both the additive and the interaction effect of Gender, and the fitted
model is shown in Figure 12.6. This actually corresponds (almost) to fitting two
separate models here, one for male and one for female bears.

It is quite common to also have models with only factors as explanatory vari-
ables. This is typical for designed experiments, where the explanatory variables
have been systematically varied over some levels. If you take some course in
analysis-of-variance (ANOVA) of designed experiments, this will be the topic.
The 1m function can still be used.

12.2.7 Final remarks on regression

There are several other functions beside 1m that can be used in regression or
ANOVA type of data analysis. One commonly used is glm, which is short
for Generalized Linear Models. If you want to use logistic regression or log-
linear models this is the one to consider. A package called 1me4 contains useful
extensions of 1m to handle more complicated error terms (variance components,
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Figure 12.6: The fit of the model where Gender has both an additive and
interaction effect. The code for making this plot is the same as for Figure 12.5,
just replace the fitted models.

longitudinal data, pedigree information, etc.). In the next chapter we will return
to the regression problem when we take a look at localized models.

12.3 Classification

A classification problems differs from a regression problem by the response y
being a factor instead of numerical. In principle this factor can have many
levels, but in many cases we have just two. Classification problems are common,
perhaps even more common than regression problems.

One example of a classification problem is to diagnose a patient. A patient
belongs to either the class ”Healthy” or ”Disease A” (or ”Disease B” or ”Disease
C” or...etc). A number of measurements/observations are taken from the pa-
tient. These make up the data object for this patient (X;.st, containing a single
row). Based on these we want to classify the patient into one of the pre-defined
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classes. To accomplish this, we need a model (or Gregory House) that tells us
how to classify (predict) given the current Xy -values. The model must be
fitted to a training set, Xy¢rqin and Yirqin, which is a set of patients where we
know the true class and where we have measured the same explanatory vari-
ables. Thus, it is almost identical to a regression problem, but computations
must be done different due to the factor response.

12.3.1 Linear discriminant analysis (LDA)

Just as linear regression is a basic approach to regression problems, the LDA is
a basic approach to classification problems. The LDA idea is simple. Consider a
training data set with ¥syqin and Xyqin data for many objects from each class.
Denote the classes A, B,... etc, i.e. the response vector ¥¢rqin is a factor whose
levels are these classes. We then assume the X;,4:» data are normal distributed
around the mean for all objects belonging to the same class, i.e. we have a
centroid for each class, pa, up,.... We also assume the spread, i.e. the standard
deviation, is identical for all classes. The centroid is computed as the mean
Xtrain-value(s) for each class, and the standard deviation is computed from all
classes. The last piece we need to classify is the prior probability for each class.

The prior is the probability of belonging to a class without considering any
X-data. It says something about the size of the classes, the larger the class
the more likely any random object belongs to it. If we think of the diagnosing
problem, and class A corresponds to some rare disease and B is "everything
else”, we know that when classifying any random person the class A is much
smaller than B, i.e. any random person is more likely to belong to class B,
and the prior for class A should be small compared to that of B. On the other
hand, if we wanted to classify persons who have already gone through some
screening for this rare disease, this may no longer be true. These are no longer
”any random person”, in fact we could easily have a population where A is
more common than B. The priors we use should reflect the population we are
interested in. In most cases we either estimate the priors by the proportions of
the classes in the training data set, or we simply set them equal to each other
(”flat priors”, or all outcomes equally likely).

Once we have computed the centroids, the spread and the priors from the
training data, we can compute the posterior probability of any class given the
data object Xiese. This is a probability of any given data object to belong
to a certain class, i.e. we get one posterior probability for each of the possible
outcomes (classes, factor levels), and these probabilities sum to 1.0 for any given
data object. It is common to assign st to the class with the largest posterior
probability. Sometimes, if two or more classes are almost equally likely, we
refuse to distinguish between them and assign the object to some ’doubt-class’
indicating this is impossible to classify based on the current data.

12.3.2 The 1da function

Just as 1m is the 'workhorse’ for linear regression, the 1da has a similar role
for classification. This function is part of the MASS package, which is always
installed along with the base R installation. Let us consider a small example
using the bear data set again.
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In the bear data set the variable Gender is a factor, and we will use it as
our response. Let us try to classify bears into male or female based on data for
Weight and Chest.G (we assume the beardata have been read into the workspace,
see previous section):

library (MASS) # the MASS package is loaded
fitted.mod <- lda(Gender " Weight+Chest.G,data=beardata)

Just as 1m returns an lm-object, the 1da function returns an lda-object (try
class(fitted.mod) to verify). We can inspect this object as if it was a list, let
us have a look at the content:

> names(fitted.mod)
[1] "prior" "counts" "means" "scaling" "lev" "svd" "N"
[8] "call" "terms" "xlevels"

The prior is the vector of prior probabilities, and these are estimated by the
proportion of each class in the training data:

> fitted.mod$prior
F M
0.4166667 0.5833333

Since male bears are slightly more common than female in this (small) data
set, this will make our model classify more bears as males in the future. If
we want both genders to have the exact same prior probability we can specify
this when we fit the model. The 1da() has an option for priors, and if we add
prior=c(0.5,0.5) to the call we achieve this.

The class centroids are also interesting to inspect:

> fitted.mod$means
Weight Chest.G

F 74.6000 79.80000

M 139.7857 97.28571

As expected, male bears are characterized by being heavier and with larger chest
girth.

12.3.3 Making predictions

If we have a new data object Xiesr = (108, 88), i.e. this bears weight is 108 kg
and its chest girth is 88 cm. Is this a male or a female? Again we can use the
predict function just as we did for the regression problem:

new.bear <- data.frame(Weight=108,Chest.G=88)
class.lst <- predict(fitted.mod,newdata=new.bear)

The output is a list, and we inspect it:



12.3. CLASSIFICATION 127

> class.1lst
$class
[1] M
Levels: F M

$posterior
F M
1 0.3908931 0.6091069

$x
LD1
1 -0.0249895

First we see that the list contains a variable named class, and this is the predic-
tion for this bear, in this case it is classified as M. Then, we have the posterior
probabilities for this bear. It is approximately 60% — 40% that this is a male,
indicating a substantial uncertainty attached to this prediction.

In Figure 12.7 we have plotted the training data in the left panel and the
predicted class for all bears, including the new bear, in the right panel. Here is
the code that produced this plot:

attach(beardata)
par (mfrow=c(1,2))
is.male <- (Gender=="M")
xlims <- range(Weight)
ylims <- range(Chest.G)
plot (Weight [is.male],Chest.G[is.male],pch=15,cex=1.5,
col="cyan",xlab="Weight (kg)",ylab="Chest girth (cm)",
main="Training data")
points(Weight [!is.male],Chest.G[!is.male],pch=15,cex=1.5,
col="magenta")
legend (x=20,y=140, legend=c("Male","Female") ,cex=0.8,pch=15,
pt.cex=1.5,col=c("cyan","magenta"))
fitted.lst <- predict(fitted.mod) #using training as test
data
is.male <- (fitted.lst$class=="M") #predicted class for each
bear
plot (Weight [is.male] ,Chest.G[is.male],pch=0,cex=1.5,
col="cyan3",xlab="Weight (kg)",ylab="Chest girth (cm)",
main="Predicted class")
points(Weight[!is.male],Chest.G[!is.male],pch=0,cex=1.5,
col="magenta")
points (new.bear$Weight ,new.bear$Chest.G,pch=17,cex=1.5,
col="cyan3")
legend (x=100,y=70,legend=c("Predicted male",
"Predicted female",
"New bear"),
cex=0.8,pch=c(0,0,17) ,pt.cex=1.5,
col=c("cyan3","magenta","cyan3"))
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Figure 12.7: Classifying bears as male or female based on their weight and
chest girth, using LDA. The left panel are the training data, with the correct
separation of males and females. The right panel shows how the LDA-model
would classify them. The blue square in the right panel is a new bear, which is
classified as male by this model.

12.3.4 Sensitivity and specificity

As shown in the right panel of Figure 12.7 we have made predictions of the
gender of every bear in the data set, i.e. we have used the same data as training
set and then as test set. In the cases where we know the correct value for y;cq¢
the only reason we still predict it is to see how well our fitted model behaves.
We can now compare the predictions to the correct classification.

The accuracy of a fitted model is simply the fraction of correct classifications
it produces. Let us compute this for the bear example:
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correct.gender <- beardata$Gender
fitted.lst <- predict(fitted.mod) # using training data as
test data
predicted.gender <- fitted.lst$class
accuracy <- sum(correct.gender==predicted.gender)/
length(correct.gender)

and we find the accuracy is around 0.71.

We realize there are some errors, and there are two ways we can make errors
here: Either classify a male bear as female or a female bear as male. To get an
overview of all outcomes we can use the table function that we have seen before.
We give this function two input vectors, the correct and predicted classes, and
it will output what we refer to as a confusion table:

> table(correct.gender ,predicted.gender)
predicted. gender
correct.gender F M
F 8 2
M 5 9

This table has 2 rows and 2 columns (since we have 2 classes). Here the rows
correspond to the correct classification and the columns to the predicted. We
see that in 8 cases a female bear is predicted as female and in 9 cases a male
bear is classified as male (the diagonal elements). These are the 17 correct
classifications behind the accuracy we computed above. There are 7 errors, and
we see that 5 of these are male bears being predicted as female, while 2 female
bears have been incorrectly assigned as males.

We can now compute the sensitivity and the specificity of the fitted model.
In this example we may define sensitivity as the ability to detect a female
bear, and specificity as the ability to detect a male, but we could just as well
reverse it. Here both classes are equally interesting, but in many situations one
outcome is of special interest (think of the diagnosing example) and then we
define sensitivity as the ability to detect this class.

If we consider the confusion table above, sensitivity is simply the number of
correctly classified females divided by the total number of females, i.e. 8/(8 +
2) = 0.8. The specificity is similar for the males, 9/(9 + 5) = 0.64. Here is the
R code that computes it:
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ct <- table(correct.gender ,predicted.gender)
sensitivity <- ct[1,1]1/sum(ct[1,])
specificity <- ct[2,2]/sum(ct[2,])

Notice that we sum the rows since we gave the correct classes as the first input
to table(). Had we reversed the order of the inputs, the correct classes would
have been listed in the columns, and we should have summed over columns
instead.

Despite the elevated prior probability for males, this fitted model seems to
have a lower ability to detect male bears compared to female bears, as seen from
the numbers above. We must stress that since we here have used the same data
first as training data and then as test data, the actual errors is most likely larger
than we see here. Quantities like accuracy, sensitivity and specificity should be
computed from real test data. The results we get here are ’best case scenarios’,
in a real situation they will most likely be lower.

12.3.5 Final remarks on classification

A close relative of the LDA method is the QDA, and the function gda is found
in the MASS package as well. You can also use regression methods for clas-
sification, typically when you have 2 classes only. Logistic regression, using
the glm function, is an example of this. There are many classification meth-
ods implemented in various R-packages, we will not even try to mention them
all here. In the next chapter we will return to classification problems and the
K-nearest-neighbor type of methods.

12.4 Important functions

Command Remark

1m Fitting a linear model

summary Generic function that can be used on (almost) all
R data structures

anova Analysis of variance for Im-objects

predict Predicting using an lm-model or lda-model (works for
many other models as well)

lda Fitting linear discriminant model

range Retrieves minimum and maximum value

table With two input vectors it produces a confusion table

tapply Applies a function to groups of elements in a vector,

grouped by a factor

12.5 Exercises

12.5.1 LDA on English poems

This is the continuation of the poetry exercise from chapter 10. It gives you a
flavour of the power of pattern recognition and statistical learning...
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In order to reveal the identity behind the unknown poem we need to train
a classification model on some training data. This means we need some poems
that we know are written by Blake, Eliot and Shakespeare, and we must compute
the numerical fingerprint of each poem.

Load the file training_poems.RData. This contains a list of 28 poems, and
a vector indicating which author has written each poem. Also load the file
symbols.RData from the poetry exercise in chapter 10. Make a vector y.train, a
factor based on the authors. Make a matrix X.train with one row for each poem
and one column for each symbol. Make a loop counting the number of symbols
in each poem, putting these into the rows of X.train. Use the symbol-counting
function from the poetry exercise in chapter 10.

Fit an LDA-model based on y.train and X.train. Make a plot of the result-
ing lda-object. What does this tell you?

Finally, predict which author wrote the unknown poem. Look at the poste-
rior probabilities. What is your conclusion?

12.5.2 Imputing in the longest series of monthly temper-
atures in Norway

In this exercise we will impute some missing values in Norways longest series of
monthly average air temperatures. This temperature series has been observed
here at NMBU starting at January 1874, and is a valuable input in todays
climate research. We saw this in an exercise in chapter 5, and you may have
noticed there were some missing data for some months in recent years. We
will now predict the missing temperatures from daily temperatures taken from
another data file. In this exercise we will repeat some topics from this and
previous chapters, but also look at some new and useful functions.

First, load the data in the file Tmonthly.RData. Put the temperatures into
one long vector, just as in the chapter 5 exercise. Let us call this vector Temp.
longest. Create a vector of texts indicating the time for each observation. Each
text must be a combination of month and year like this: "1_1874" corresponds
to January in 1874, "2_1874" corresponds to February in 1874, and so on, up
to "12_2013". HINTS: Use the rep function to create a vector of years and a
vector of months, and then use paste to merge them. Let us call this text vector
Time.longest. Both Temp.longest and Time.longest should be vectors of 1680
elements.

Next, load the file daily.weather.RData that we have seen before. There are
some days missing in the Air.temp variable, but still enough data to compute
a monthly average for every single month in this time span, which we will do
next.

We could have used loops here, but will instead use the function tapply.
This function takes three basic arguments: A vector of numerical data, in our
case the daily temperatures, a vector of factors indicating some grouping of the
data in the first argument, in our case a text vector grouping all days of the
same month and finally a function that should be applied to the data in every
group, in our case the function mean. Since we may have some NA’s in our data,
we must also provide the na.rm=TRUE option that we have seen before.

To use tapply we first need the grouping vector, i.e. a vector with the
same number of elements as as there are daily temperatures. We use the same
principle as above for Time.longest, i.e. the first 31 elements of this vector
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should all be "1_1988", the next 29 elements should be "2_1988" and so on.
Then use this in tapply to compute monthly average temperatures from the
daily temperatures. Call this vector Temp.daily. It should now have names
corresponding to the factor levels, i.e. the months. The statement

Time.daily <- names (Temp.daily)

should produce a vector Time.daily with texts similar to those in Time.longest.
Both Temp.daily and Time.daily should be vectors of 312 elements.

Next, we need to identify which elements in Time.longest are also found in
Time.daily. We use the function match for this. It takes two vectors as input,
let’s call them x and y. It finds the position of the first match of each element
of x in y. A code like this should do the job:

idx.overlap <- match(Time.daily,Time.longest)
Temp.longest.overlap <- Temp.longest[idx.overlap]

Try out the match function and make certain you understand how it works, this
is a very handy function! Try this small example in the Console window: match
(c(2,4,1),c(2,2,4,3,6,4,3,2,1)). Make a plot of Temp.longest.overlap versus
Temp.daily, these should be temperatures from the exact same months.

If you make the plot, you will see the temperatures are not identical, i.e.
we cannot just use the Temp.daily temperatures directly to fill in the holes in
Temp.longest.overlap. Instead we fit a linear model, predicting Temp.longest
.overlap from Temp.daily. Create a data.frame called train.set containing
the non-missing data in Temp.longest.overlap and the corresponding values in
Temp.daily. Then, fit a linear model with Temp.longest.overlap as response
and Temp.daily as explanatory variable. Next, make another data.frame called
test.set similar to train.set except that you use only the missing data in Temp
.longest.overlap and the corresponding values of Temp.daily. Finally, predict
the missing values in test.set using the fitted linear model.

Before we are truly finished, we need to put the imputed data back into their
correct positions in Temp.longest. Can you do this? (requires very good insight
in the use of index vectors...)

REMARK: Notice how small part of this exercise is the actual statistical
modelling, and how much more labour is related to the handling of data. This
is quite typical of real-life problems!



Chapter 13

Local models

13.1 Large data sets

In the previous chapter we introduced data modelling problems and the response
variable y and the matrix of explanatory variables X. In this chapter we will
focus on the prediction part of data modelling. We seek to establish some
relation (fitted model) between the response and the explanatory variables in
such a way that if we observe a new set of explanatory variables (new rows of
X) we can use the fitted model to predict the corresponding outcome of y.

The number of data objects in a data set, i.e. the number of rows in X, is
by convention named n. The number of variables (columuns) in the X matrix is
named p. In many branches of modern science we often meet large data sets.
This could mean we have a large number of objects (large n) and/or it could
mean we have a large number of variables (large p). The cases where we have
n > p, and even n >> p (>> means 'much larger than’), usually calls for a
different approach to data analysis than if we have n < p. In this chapter we
will consider problems where we have n > p, i.e. the matrix X is ’tall and slim’.

These type of data sets arise in many situations. In some cases it is some
automated measurement system that samples some quantities over and over
again, producing long ’series’ of data. Observations of weather and climate
are examples of such data. A data object contains typically the measurements
from the same time (e.g. same day). Another example is image data. Each
pixel corresponds to a data object, with data for location (row and column
in the image) and some color intensities. A third example is modern biology,
where a large number of persons/animals/plants/bacteria have been sequenced
to produce some genetic markers for each individual. From these markers we
can obtain some numbers, corresponding to a data object for that individual,
and we can do this for a large number of individuals.

Due to ever-improving technologies, we often find data sets containing thou-
sands or even millions of data objects. These are situations where "push-button’
solutions in standard statistical software packages often do not work very well,
if at all. The only solution is to do some programming.

133
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13.2 Local models

A typical approach to a data set with many objects is to consider local models.
The general model

y=f(X)+e

says that the response variable is related to the explanatory variables through
some function f. It also has some contribution from an error term e. The
function f could be any function, and this makes the model very general. In
the case of simple linear regression in the previous chapter, we assumed

f(X) =plA+BR21X

However, relations are rarely exactly linear, and sometimes very far from it, and
the more data we have the more apparent this becomes.

Instead of searching for the ’true’ function f that produced the data, we
often approximate this function by splitting the data set into smaller regions,
and then fit a local model within that region. These local models can be simple,
often linear models, and even if the function f is far from linear, it can usually
be approximated well by splicing together many local models. In Figure 13.1
we illustrate the idea.

13.3 Training- and test-set

In the previous section we saw that any data set can be split into two parts,
the training-set and the test-set. We may think of the test-set as the 'new’ data
that we have not yet observed, but just as often both the training-set and the
test-set are just two (randomly chosen) subsets of the same total data set. If
we have the full data set called (Y11, Xaiz) we can split this into a training-set
(ytraina Xtrain) and a test-set (ytest7 Xtest)-

The whole idea of this splitting is to fit our model only to the training
data, and then use the test-set to test how well the fitted model can predict.
This means we use the X5 together with the fitted model to predict yiess,
pretending yies¢ is unknown. Finally, when the predictions are done we can
compare them to the actual observations of y;.s¢ and see how close to the "truth’
we came.

Above we mentioned that we use n to symbolize the number of data objects
(rows) in a data set. More specifically, n denotes the number of data objects in
the training set. Both the training and test-set will of course have p variables.

Notice that for very small data sets this splitting into two subsets may be
difficult, since we would then have critically small training- and/or test-sets.
However, for data sets with many data objects this is rarely a problem. Even
if we set aside a substantial number of data objects in a test set, we still have
plenty of data objects left in the training set.

The distinction between training- and test-data are not always clear in the
literature. We will make some efforts to pay attention to this distinction, because
it is of vital importance for understanding the methods we are looking at in this
chapter. In the next chapter we will focus on this splitting of the data even
more.
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Figure 13.1: An example of the local model idea. The thick blue curve is the
true function relating X and y. Note that this function is in general unknown
to us! It is clearly not linear. The gray dots are the training data sampled,
and due to the error term (noise) they fluctuate around the blue curve, but the
non-linear shape of the relation is visible in the data as well. Instead of trying to
find the (perhaps complex) function behind that blue curve, we approximate it
by splitting the data set into regions, and then fit a simple linear model in each
region. The red lines are the fitted local models in each region. Here we chose
to split into 4 regions, but this will depend on how much the data fluctuate and
the size of the data set.
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13.4 Local regression

13.4.1 Moving average

The simplest form of a local regression method is what the book AISL denote
K-nearest-neighbour regression and that we will refer to as the moving average.
The moving average idea means that when we are to predict the outcome y;s¢[7]
we use the corresponding data object Xiest[i,] to find the neighbourhood of this
data object among the training data objects in Xy.qin. Once we have located
which data objects of X;,.q, are the neighbours, we predict y;es:[i] by computing
the mean of the neighbours’ ¥¢qin-values.
The algorithm can be described as follows:

1. For a given data object Xiest[i,] compute the distances to all X4, data
objects. This will be a vector with n distances, one for each data object
in Xyqin. Call this d.

2. Find which data objects produces the K smallest distances in d. Let I;
be the index vector of these objects.

3. Use the index vector I; to retrieve the corresponding values yiqin[l;], and
predict by ytest[i] = Ytrain [Iz]

The term ’'moving average’ comes from the fact that this model predicts the re-
sponse ¥iest at a certain point in the space spanned by the explanatory variables
as an average of the responses of the neighbouring data objects. As we 'move’
through this space (consider new test-set data), we compute new averages.

Let us consider a small example to make the ideas more transparent. In the
previous chapter we used the bears data set for illustration. Let us again (as in
section 12.2) try to predict Weight from Length in this data set, i.e. the response
variable is Weight and the only explanatory variable (p = 1) is Length. The full
data set has 24 data objects. We split the data set into a training-set consisting
of the first 23 data objects, and a test-set with the last data object. Here is
some code that sets the scene:

beardata <- read.table(file="bears.txt",header=TRUE)

y.train <- beardata[1:23,1] # column 1 is Weight
X.train <- as.matrix(beardata[1:23,2]) # column 2 is Length
y.test <- beardatal[24,1] # column 1 is Weight
X.test <- as.matrix(beardatal[24,2]) # column 2 is Length

Let us predict the Weight of the bear in the test-set to illustrate the procedure.

In the algorithm above we start by computing the distances from X.test[i,]
to all data objects in X.train. In this case the test-set has only one object, but
for the sake of generality we still use the index i, and set it to i<-1.

What is a distance? We will talk more about distances below, but for now we
say that distance is simply the absolute difference in Length (a distance cannot
be negative). We compute all distances in one single line of code:

i <=1
d <- abs(X.test[i,]-X.train) # abs gives absolute value
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This results in the vector d with 23 elements, one for each data object in X.train.
If we look at this distance vector

> as.vector (d)
[1] 41 34 20 16 28 28 2 23 32 19 8 8 30 61 5 15 23 5
8 64 5 28 9

we notice that data object 7 has distance 2 to X.test[i,], meaning this bear
has a Length 2 cm longer or shorter than our bear of interest. We also notice
that data object 15 and 18 have small distances to our X.test[i,]. Next, we
must find which distances are the smallest. Notice, we are not interested in the
actual distances. We are only interested in which data objects have the smallest
distances (not how small they are).

To find this index vector (called I; above) we use the function order in R.
This will take as input a vector, and return as output the index vector that,
when used in conjunction with the input vector, will re-arrange the elements in
ascending order. This may sound complicated, let us illustrate:
> idx <- order (d)
> idx

[1] 7 15 18 21 11 12 19 23 16 4 10 3 8 17 5 6 22 13
9 2 1 14 20
> d[idx]
[1] 2 5 5 5 8 8 8 9 15 16 19 20 23 23 28 28 28 30
32 34 41 61 64

We give d as input, and the output is stored in idx. Notice that idx specifies
that element 7 in d should be put first, then element 15, then element 18, then
21, and so on, to obtain a sorted version of d. We also use the index vector to
produce this sorting, by d[idx], and indeed we see the elements are now shuffled
in a way that sorts them in ascending order. You should really make certain
you understand how order works, this is one of the most convenient functions
in R!

In the moving average method there is one parameter, the number of neigh-
bours we should consider. This is the K in the K NN name. In this example
we will use K = 3, but will return to this choice later. The prediction is made
by adding the following lines of code:

idx <- order(d)
K <- 3
y.test.hat <- mean(y.train[idx[1:K]])

Notice how we use the K first elements of idx to directly specify which elements
in y.train to compute the mean from. The whole procedure is illustrated in
Figure 13.2.

Notice that the moving average method does not fit an overall model to the
training data first, and then use some predict function, as we saw for 1m and
1da in the previous chapter. Instead, we use the X;.s+ data object and make a
look-up in the training data for similar data objects, and fit a very simple model
to these. This model is only valid at this particular point, and as soon as we
move to some other X;.s; values, we must repeat the procedure.
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Figure 13.2: The filled dots (blue and red) are the training data. The red
vertical broken line marks the length of the test-set bear. Based on its length,
we find the K = 3 bears in the training data with most similar lengths, these
are the red filled dots. The green triangle is the predicted weight, computed as
the mean of the weights behind the red dots. The open red dot is the actual
observed weight for the test-set bear.
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13.4.2 Local linear regression

The local model we fitted in the moving average method is extremely simple.
It is simply assuming the relation between response and explanatory variables
is constant in the region it considers. This is OK if the region is very small.
However, sometimes there are no, or at least very few, neighbours very close
to our Xyes¢. In such cases we may benefit from making slightly more complex
models even in a local regression.

This is the idea behind the lowess method (Locally Weighted Scatterplot
Smoother), where we fit a linear regression model based on the neighbour data
objects, and use this to predict the y;ss value. Apart from this, the rest is
identical to the moving average. Here is a small function that can be used for
predicting a single y:.s; value based on training data with a single explanatory
variable:

locLinReg <- function(X.test,y.train,X.train,K=1){
# X.test must be a single data object
# y.train must be a vector of n elements
# X.train must be a matrix of n rows and 1 column
d <- abs(X.test-X.train)
idx <- order (d)
dfr <- data.frame(y=y.train[idx[1:K]],X=X.train[idx[1:K]])
Im.fit <- 1Im(y~X,data=dfr)
y.test.hat <- predict(lm.fit,newdata=data.frame(X=X.test))
return(y.test.hat)

If we source this function, we can use it to predict the Weight of all bears in the
data set by the following script:

y.hat <- rep(0,24)
for( i in 1:length(y.hat) ){
y.hat[i] <- locLinReg(beardata$Length[i],
beardata$Weight [-i],
beardata$length[-i] ,K=6)

Here we used K = 6, and the results are shown in Figure 13.3.

13.4.3 The 1cess function

In R we have an implementation of a local regression in the function called
loess (). It can predict the response based on one or two explanatory variables,
and the input is specified quite similar to 1m(), using a formula. Instead of
the parameter K, there is an option called span which is a number between 0
and 1, specifying how large fraction of the training set should be used as the
neighbourhood. Thus, if the training-set has n = 100 data objects, and we
specify span=0.25, it corresponds to using K = 25 neighbours.

Here is an example of how we can use loess() to estimate how bears weights
are related to their lengths:
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Figure 13.3: The blue dots are the observed and the brown triangles the pre-
dicted weights of bears using the local linear regression function from the text.

loess.fit <- loess(Weight~“Length,data=beardata)
y.predicted <- predict(loess.fit,newdata=data.frame(Length
=91:187))

The result can be seen in Figure 13.4.

13.5 Local classification

Local methods are just as popular for classification as for regression, and again
they are more typically used when we are faced with large data sets where we
have many data objects.
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Figure 13.4: The curve shows the predicted weights of bears with lengths from
91 to 187 cm using the loess function as described in the text.

13.5.1 K-Nearest-Neighbour classification

The KNN classification method is widely used, and for good reasons. It is both
intuitive, simple and performs very well in many cases. The idea is parallel to
the moving average and local linear regression:

1. For a data object in the test-set (Xyest[i,]), compute the distance to all
data objects in the training-set (X¢rqin)-

2. Find the K training-set objects having the smallest distance to the test-set
data object. We call these the nearest neighbours, and the index vector
I; tells us where we find them among the training-set objects.

3. Classify yiest to the most common class among the nearest neighbours,
i.e. a simple majority vote.

Thus, the only difference is that instead of computing a mean value (which is
senseless since the response is no longer numerical) we count how often we see
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the various classes (factor levels) among the nearest neighbours, and choose the
most common one.

In the class package in R you find a standard implementation of this method
in the knn function. There are, however, good reasons for us to make our own
version of the KNN method. First, it is the best and perhaps only way of really
understanding the method. In fact, unless you can build it, you haven’t really
understood it (who said this?). Second, the knn function computes unweighted
euclidean distances only, which is something we may want to expand, as we will
see below. In the exercises we will return to the KNN classification.

13.6 Distances

Common to all the local methods we have looked at here is the need for comput-
ing distances. The nearest neighbours are simply defined by how we compute
the distances, and this step becomes the most important in all these methods.
In the bears example we used a single explanatory variable. In general, we will
more often use several, and the matrices X;,qin and Xies: can have two or more
columns. In such cases we need to give some thought to how we compute a
distance between two data objects.

13.6.1 Minkowski distances

Let X[i,] and X[j,] be two data objects. We assume both rows have p > 1
elements, i.e. we are using multiple explanatory variables. A Minkowski distance
between the two objects is defined as

p 1/q
dfi, j] = (Z | X[i, k] = XTj, k]l") (13.1)
k=1

where the exponent g > 0. This is a general formula, and by choosing different
values for ¢ we get slightly different ways of computing a distance.

If we use ¢ = 2 the Minkowski formula give us the standard euclidean dis-
tance

dli, j] = | Y 1X[i, k] — X[j, k]2 (13.2)
k=1

which is what we call ’distance’ in daily life. Can you see how this follows from
Pythagoras theorem? Imagine we have two explanatory variables, i.e. p = 2.
Any data object can then be plotted as a point in the plane spanned by these
two variables. The euclidean distance between two points (data objects X|i, ]
and X[7,]) is the length of the straight line between them.

Now, imagine in this plane you can only travel in straight lines either hori-
zontal or vertical (no diagonals). This is typically the case if you walk in a city
centre like Manhattan. If you are going from one point to another, you have
to follow the streets and avenues, and there is no way you can follow diagonal
straight lines (unless you can walk through concrete walls). Thus, the distance
between two points is no longer euclidean! Instead, if we use ¢ = 1 in the
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Minkowski formula we get the Manhattan distance
P
k=1

which is the distance between two points X|[i,] and X |[j,] trapped inside a grid.
Notice how we just sum the absolute difference in each coordinate.
We can also use ¢ = 3 or larger. If we allow ¢ to approach infinity we get

P 1/q
dli, j] = Jim, (Z | X[i, k] = X, knq) = max | X[i, k] = X[j, k]| (134)
k=1

which is usually referred to as the maximum-distance. Notice how the distance
between the two points is now just the largest coordinate difference.

Let us consider a small example to illustrate that the choice of distance
metric has impact on a nearest neighbour method. We have two explanatory
variables, and let

1.0 1.1
Xiest = (0.0 00) and Xygpm=| 04 1.2
0.0 1.5

First, we compute the euclidean distance from X4 to all three data objects in
Xirain using the formula above:

/(0.0 — 1.0)2 + (0.0 — 1.1)2 1.49
d=| /(00-04)2+(0.0-12)2 | = 1.26
/(0.0 = 0.0)2 + (0.0 — 1.5)2 1.50

and we see that the second data object in Xi.qsn is the nearest neighbour of
Xiest- If we compute the Manhattan distance from the same data we get

0.0 — 1.0] + (0.0 — 1.1 2.1
d= | 100-04/+00-12] | =] 16
0.0 — 0.0] + [0.0 — 1.5| 1.5

and this time the third data object is the nearest neighbour. Finally, if we use
the maximum-distance

maxi 5(]0.0 — 1.0],]0.0 — 1.1]) 1.1
d= | max;2(]0.0—04],j00-1.2) | = 1.2
max 5(]0.0 — 0.0],]0.0 — 1.5]) 1.5

which means the first data object produces the smallest distance from Xies:.
This shows that the choice of distance metric may have an effect, and that we
should be conscious of what we use.

There is a function in R for computing distances between the objects, called
dist. It takes as input a matrix and computes distances between all pairs of
data objects of this matrix. However, keep in mind that we do not really seek
the distances between the data objects of the training-set (or test-set). Instead,
we want to have the distance from a test data object, Xiest[i,], to all training
data objects in X¢qin. Since we are now experts in R programming, we can
just as well make this function ourselves!
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13.6.2 Scaling of variables

Just as important as the choice of distance formula is the scaling of the vari-
ables. Before we compute distances and look for neighborhoods, we should make
certain all variables have comparable values, i.e. they are on the same scale.

Previously we have seen some data for body weight and body length of bears.
These could very well be used as the explanatory variables (i.e. p = 2) in some
modelling exercise. If length is measured in meters and weight in milligrams,
the numbers in the weight column will be huge compared to those in the length
column. Plugging this into the distance-formulas will result in the neighborhood
of any bear are the bears with (almost) similar weight, regardless of height.
And vice versa, if we instead measure length in millimeters and weight in tons,
any neighborhood is completely decided by length. Clearly, we do not want
measurement units to affect our methods like this.

The common way to standardize the explanatory variables is to center and
scale the data in each column of the Xy, 4;, matrix.

e Centering means we compute the mean value of the column, and subtract
this from every element in the column.

e Scaling means we compute the standard deviation of a column, and divide
every element in the column by this number.

The function scale in R can be used to transform your Xj,q;, matrix in this
way prior to the computing of distances.

Remember that if you do something to the columns of Xy,4;, you must do
exactly the same to the corresponding columns of Xi.s:. Any centering and
scaling is computed from the Xj,q;, matrix only. Each column of this matrix
has a mean and a standard deviation. Then, after scaling Xy, you must use
the exact same means and standard deviations to do the same on X;.s. Never
re-compute the mean and standard deviation based on the X;.s matrix! If you
do this, the training-set and the test-set are on (slightly) different scales, and
any model fitted to the training-set will perform poorer on the test-set.

13.7 Important functions

Command Remark

loess Local regression

predict Can also be used for loess objects

knn K-nearest-neighbour in the class package
dist Computes several types of distances
scale Scales matrices

13.8 Exercises

13.8.1 Classification of bacteria

We have a data set where thousands of bacteria have been assigned to three
different Phyla. All bacteria are divided into a hierarchy starting at Phylum
(division), then Class, ..., down to Species. Thus, Phylum is the top level
within the kingdom of bacteria. For each bacterium we have also measured the
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size of the genome (DNA) in megabases, and the percent of GC in the genome.
DNA consists of the four bases A,C,G and T, and GC is simply the percentage
of G and C among all bases.

Is it possible to recognize the Phylum of a bacterium just by measuring the
genome size and the GC-percentage?

In order to answer this we need to do some pattern-recognition (which is
another term for classification).

Part A - Overview the data

Read the data from the file three_phyla.txt. Plot Size versus GC as a scatter-
plot, and color the markers by Phylum. Are the classes well separated? Based
on this data set, what is the prior probability of each class?

Part B - Splitting and scaling data

Split the data set into a training-set and a test-set. Sample at random 1000 rows
of the data.frame, and put these into a data.frame named phyla.tst. Put the
remaining rows into phyla.trn. Use the sample function for random sampling.

The two explanatory variables are on very different scales in this example,
one being in megabases and the other in percent. To avoid any effects of this,
we should scale the explanatory variables. Use the function scale to center and
scale the explanatory variables of the training-set.

The test-data must also be scaled with the exact same values, i.e. you cannot
just re-compute the scaling values based on the test-set, you MUST use the same
values that were computed for the training-set. These values are available from
the previous step. Let X.scaled be the variable where we stored the result of
the scaling in the previous step (e.g. the output from scale(as.matrix(phyla.
trn[,2:3]1)). This variable has two attributes. Attributes are extra information
we may give to any variable in R. In this case there is one attribute named
"scaled:center" and one named "scaled:scale". These contain the values we
need. We can retrieve them by the attr() function, like this:

cntrs <- attr(X.scaled,"scaled:center")
sdvs <- attr(X.scaled,"scaled:scale")

There will be two values in both cases, since we have two explanatory variables.
Now, we subtract the cntrs values from the corresponding columns of phyla.tst
and then divide each column og phyla.tst by the corresponding value in sdvs.

You should make a plot as in part A above, of the training-set using open
circles as markers, and the test-set with crosses as markers, just to verify that
they are found more or less in the same part of the scaled Size-GC-plane. Notice
how the numbers on the axes are now comparable in size.

Part C - LDA

Fit an LDA-model to the training-set, and predict the classes of the test-set (see
chapter 12). Compute the accuracy of this fitted model.

Make a plot to compare the predicted and the true classes. Make two panels,
and plot the predicted classes as in part A above in the left panel and the true
classes in a similar way in the right panel.
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Part D - KNN

Next, we classify each test-set object by KNN. You can use the function knn in
the class package for this. Again, compute the accuracy, and make plots like
for LDA above. How does it compare to LDA?

Part E - Make your own KNN function

In order to really understand the KNN classification method, you should build
your own KNN function. The input arguments can be more or less the same
as for the knn in part D above. That function uses euclidean distances only,
perhaps you can add an option for other distance metrics? HINT: Make first a
function my.dist that takes as input a single test-set object and a training-set
matrix, and computes the distance from the test-set object to all training-set
objects. This function should then be used by the KNN function!



Chapter 14

Cross-validation

14.1 The bias-variance trade-off

In chapters 12 and 13 we fitted models to (training) data. When fitting any
model to data, there are two sources of error. These are usually referred to as
the bias and the variance of the fitted model.

The bias is the error we get from using a simplification of the real world.
When we assume some model, no matter how simple or complex, there is always
some degree of simplification in it. If not, it is not a model! The concept of
a model means simplification. Thus, the bias is what we may also call the
‘modelling error’. In the local methods of the previous chapter we used a simple
model on a small neighbourhood, but even in this small neighbourhood the
simple model is a simplification. However, the smaller the neighbourhood, the
smaller this error will be. So, why don’t we make our neighbourhoods extremely
(infinitely) small?

The reason is the variance source of the error, the ’estimation error’. We
know that if we have many data points, this error becomes smaller. Each
data point carries some information, and the more data points we use, the
more information we have. In this perspective, we should actually broaden the
neighbourhoods of the local model, since larger neighbourhoods means more
data are found inside them.

This is the classical trade-off between bias and variance. We cannot have
it both ways, and somewhere in between there is usually a balance where we
find the smallest sum of errors (bias+variance). Going to the extremes in either
direction will result in one of the sources blowing sky-high and we have a useless
fitted model. This is illustrated in Figure 14.1.

14.1.1 Model selection

In the local models we have a parameter, K, governing the size of the neigh-
bourhood, and by tuning this up or down we can choose between

e Small K, which means smaller bias, but larger variance.

e Large K, which means larger bias, but smaller variance.

147
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Searching, and finding, the optimal value for K is often referred to as model
selection.

It should be noted that the bias-variance trade-off applies to all models, not
only the local models of the previous chapter. In multiple linear regression or
LDA we include several explanatory variables to predict the response. As we saw
briefly in chapter 12, these explanatory variables can be either distinct variables
or just higher-order terms of some other variable, or interactions between two or
more variables (with higher order terms...etc). Anyway, we can choose to include
or exclude an explanatory variable in such a model. The inclusion/exclusion of
variables in this setting corresponds exactly the choosing the value of K above:

e Include many variables, which means smaller bias, but larger variance.

e Include few variables, which means larger bias, but smaller variance.

Again there is always some optimal level of inclusion/exclusion, and finding the
best set of explanatory variables to include in the model is again called model
selection.

Notice that with the local methods, the model as such is fixed but the data
set used for fitting varies by the size of the neighbourhood. If we use a moving
average, it has one single parameter, the mean inside the given neighbourhood.
This parameter must be estimated from the data in the neighbourhood, and the
more data we have, the better it is estimated. For LDA and multiple regression,
the data set used for fitting is fixed, but the number of parameters (e.g. the 3’s
in the regression model) increase/decrease depending on how many variables we
include/exclude .

14.1.2 Why model selection?

The obvious answer to this is to get best possible predictions. If a fitted model
is to be used for predicting or classifying new obervations (e.g. weather forecast,
stock market changes, diagnosing patients, etc.) it is of vital importance that
it has been fine-tuned with respect to the bias-variance trade-off. A common
mistake is to focus too much on reducing the bias, since this is where we enter
our ’knowledge’ about the phenomenon. The result of this will then be over-
fitting, i.e. the fitted model is fitted too closely to the training-set data, and
when applied to the test-set it will fail severely.

However, model selection is also interesting from another perspective. In
science we are often not interested in prediction tools. Instead, we want to un-
derstand how the response variable is related (or not related) to the explanatory
variables. The model selection exercise can tell us which relations are the 'real’
ones and which are not. Here is an example from modern biology:

We want to diagnose newborn babies with respect to a severe illness related
to digestion. The response is a factor with the levels A (healthy) or B (the
baby has the disease). The explanatory variables are counts of various types
of bacteria taken from the baby’s gut. If we have a training-set of some babies
with and some without this disease, and their gut bacteria samples, we can
make a model where we try to classify A and B with respect to the bacteria-
data. Some bacteria may be relevant and some may not, and performing a
systematic model selection may tell us exactly which bacteria provide us with
the diagnosing information. These are the bacteria we should look more closely
at in order to understand the disease.
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Figure 14.1: A schematic overview of the trade-off between bias and variance.
The horizontal axis indicates the choice of neighborhood size K in the local
models. Using a small K will produce a small bias (blue curve), but a large
variance (red curve). The sum of them (green curve) will be quite large. At the
other end of the K-axis we get opposite effects, and again the sum is quite large.
Somewhere in between we often find a balance where both bias and variance
are fairly small, and their sum is minimized. Note: The shape of the total error
(green curve) is in reality never as smooth as shown here, but this illustrates
the principle.
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14.1.3 Prediction error

We cannot observe neither the bias nor the variance of a fitted model, simply
because we do not know the true underlying function (if we did the whole
modelling would be meaningless). But, we can estimate the sum of them.

As we have seen before, we split the full data set into a training-set and a
test-set. We fit our model to (Ysrain, Xtrain) only. Pretending yes: is unknown,
we predict its values from X;.s; using the fitted model, and then compare these
predictions to Yest- From this we can compute the prediction error. A com-
monly used formula for regression problems is to compute the Mean Squared
Error of Prediction (MSEP):

m

MSEP = > (gueulil ~ freatlil)? (14.1)
i=1

where m is the number of data objects in the test-set, and g5 [7] is the predicted
value of yest[i].

For classification problems the MSEP is replaced by the Classification Error
Rate (CER):

CER = % Z I(ytest [Z] 7é gtest[i]) (142)

where the function I() takes the value 1 if its input is TRUE, and 0 otherwise.
It just counts the number of cases where we have mis-classified. In chapter
12 we mentioned the accuracy of a classification, and the CER is 1 minus the
accuracy.

Both the MSEP and the CER are quantities we can compute, and they
can both be seen as a sum of bais+variance. Notice there are some important
aspects here:

1. The training- and the test-sets are strictly separated. When we fit the
model t0 (Ytrain, Xtrain) We do not involve any information about (yiest, Xtest)-
The fitted model is based only on (Ytrain, Xtrain)-

2. When predicting and computing g.s¢[¢], we use the fitted model and Xyes:.
No information about yiest is used, we pretend it is unknown.

3. Both training- and test-set data must come from the same population, i.e.
all objects in the test set could have been part of the training set, and vice
versa, and we think of it as random which objects are in which subsets.

14.2 The cross-validation algorithm

Cross-validation is used for computing the M SEP or CER from the previous
section. We split the data set into n training-set data objects and m test-set
data objects, i.e. the full data set has L = n 4+ m data objects. However,
this splitting can obviously be done in many ways. All the data objects in the
training-set could have been in the test-set instead, and vice versa. Thus, our
computed MSEP or CER are random variables affected by this choice. The
cross-validation idea is to repeat the splitting many times in such a way that
all data objects have been part of the test-set once.
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14.2.1 The leave-one-out cross-validation

This is the most extreme version of cross-validation, but is frequently used. It
means we use one single data object as test-set (m = 1). We then use the rest of
the data objects (n = L — 1) as training-set, and use this to predict the test-set
response, computing MSEP or CER as shown above. Then, this test-set data
object is put back into the training-set and another data object takes the role
as test-set. Everything is re-computed, and another error is computed, added
to the first. We then loop through the entire data set this way, producing new
errors that we add up to the total error.
We may sketch the algorithm like this:

# Assume we have a full data set (y,X)

# The full data set has L data objects

err <- rep(0,L)

for(j in 1:L){
# Split into (y.train,X.train) and (y.test,X.test)
idx.test <- j
y.test <- y[idx.test]
X.test <- X[idx.test,]
y.train <- y[-idx.test]
X.train <- X[-idx.test,]

# elements idx.test in y

# rows idx.test in X

# elements NOT idx.test in y
# rows NOT idx.test in X
Fitting the model...

Predicting y.test, we denote this y.test.hat

H =

# Computing error...

err[j]1 <- (y.test-y.test.hat) 2
} # next split...
MSEP <- sum(err)/L

As you can see the fitting and prediction has been left as comments here, and
must be filled in, depending on the method we use. The cross-validation itself
will work for any method plugged in.

Notice that if the full data set has L = 1000000 data objects, the loop above
will run a million times. The model is (re-)fitted inside the loop, and if this
takes some time, the looping may take a long time. If the fitting takes 1 second,
then 1 million iterations will take a week to complete!

Also, if the data set is huge, the training-set is almost identical in each
iteration, and the fitted models will be almost identical. In a huge data set
almost nothing changes by leaving out a single data object. Leaving out larger
subsets of the data is required to get some real variation between the fitted
models.

14.2.2 C-fold cross-validation

In general we split the full data set into C' (almost) equally large subsets, and
perform cross-validation by looping over these subsets, using each in turn as
test-set. This means the loop from above will only run C times. A typical
value is C = 10. We use the term segment for these subsets, i.e. we have C
cross-validation segments.
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How do we decide which data objects belong to which segment? We could
sample at random, but this can produce problems if the data set is small(ish)
or is skewed with respect to the response. Imagine you have a classification
problem, and one of the classes (factor levels) have few data objects. Then, if
all these end up in the same segment, you will never be able to test the ability
to recognize this class! If this segment is the test-set, then the class is lacking
in the training-set, and no method in the world will be able to recognize it. If
it is part of the training-set, it is lacking in the test-set, and you will never be
asked to recognize it. Thus, all classes should be divided into as many different
segments as possible. Here is a trick to assure this in R:

# We want C segments

idx <- order(y)

y <- ylidx]

X <- X[idx,]

segment <- rep(1:C,length.out=L)

The vector segment will now have one element for each data object. Each element
is an integer from 1 to C' and those objects with the same integer belong to the
same segment. Using this segment vector, two consecutive data objects will never
belong to the same segment, and since we first sorted them this will guarantee
maximum spread over the segments.

The C-fold cross-validation algorithm can then be sketched as

err <- rep(0,L)

for(j in 1:C){
# Split into (y.train,X.train) and (y.test,X.test)
idx.test <- which(segment==j)
y.test <- y[idx.test] # elements idx.test in y
X.test <- X[idx.test,] #
y.train <- y[-idx.test] # elements NOT idx.test in y
X.train <- X[-idx.test,] # rows NOT idx.test in X

rows idx.test in X

Fitting the model...
Predicting y.test, we denote this y.test.hat

H H=

# Computing error...

err[idx.test] <- (y.test-y.test.hat) 2
} # next split...
MSEP <- sum(err)/L

The only difference to the leave-one-out code is the way we find idx.test and
that we compute the error for several data objects in each iteration.

14.3 Example: Temperature and radiation

14.3.1 The data

From the daily weather data set we want to see how maximum air temperature
depends on global radiation (incoming solar energy). In the file daily.maxtemp.
rad.RData we have a data.frame with the columns Air.temp.max and Radiation.
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Figure 14.2: Each of the 9108 dots represent a daily weather observation of
maximum air temperature and global radiation.

In Figure 14.2 we have plotted the response (maximum air temperature) versus
the single explanatory variable (radiation).

14.3.2 Fitting a linear model

Most people would say that this looks pretty much like a straight line relation,
and fit a simple linear model:

y=B1]+ B2z +e

where y is the temperature and x is the radiation. The result looks like this:
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> Im.fit <- 1lm(Air.temp.max~Radiation,
data=daily.maxtemp.rad)
> summary (lm.fit)

Call:
lm(formula = Air.temp.max ~ Radiation, data = daily.maxtemp.
rad)

Residuals:
Min 1Q Median 3Q Max
-21.3020 -3.8528 0.1647 4.1500 16.0160

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 2.709310 0.090538 29.93 <2e-16 **x*
Radiation 0.818983 0.007475 109.56 <2e-16 *x*x*
Signif. codes: 0 * %k % 0.001 * % 0.01 * 0.05
0.1 1

Residual standard error: 5.762 on 9106 degrees of freedom
Multiple R-squared: 0.5686, Adjusted R-squared: 0.5686
F-statistic: 1.2e+04 on 1 and 9106 DF, p-value: < 2.2e-16

We can see the slope is estimated to 0.82, and in Figure 14.3 we have added the
fitted line to the scatterplot of the data.

14.3.3 The local model alternative

This data set has many data objects (n = 9108) and only a single explanatory
variable (p = 1). This is a typical situation where a local model would often give
us a better description of the relation than a simple linear model. Notice from
Figures 14.2 and 14.3 how dense the data are, and almost any point here will
have plenty of near neighbours. A nearest-neighbour approach is worth trying.

We will consider a simple moving average model. We have made a function
for moving average or knn-regression, and it looks like this:

knn.regression <- function(X.test,y.train,X.train,K=3){
# Simple local regression method for one single
explanatory variable,
# i.e. both X.test and X.train must be vectors
n <- length(X.train)
m <- length(X.test)
y.test.hat <- rep(NA,m)
for(i in 1:m){
d <- abs(X.test[i]-X.train)
idx <- order(d)
y.test.hat[i] <- mean(y.train[idx[1:K]])
}
return(y.test.hat)
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Figure 14.3: The line shows the fitted linear model.

Notice that this simple version of knn-regression only take as input a single
explanatory variable, i.e. both X.test and X.train must be vectors (cannot
have more than one column). For a given choice of K (number of neighbours)
we choose any radiation value within the span of this data set, and compute
the corresponding predicted maximum air temperature by this function. The
problem is how to choose a proper K. We will first use cross-validation to give
us some hint on how to choose a proper K.

First we need to decide upon some values of K that we want to try out. We
choose

K.values <- ¢(50,100,300,500,1000,2000,3000)
nK <- length(K.values)

Since computations will take some time, we start out by a smallish number of
K values, and may increase this later. For each value in K.values we want to
compute the MSEP from equation (14.1), as a measure of prediction error.
Thus we need a vector
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MSEP <- rep(0,nkK)

to store the computed prediction error for each choice of K.

Before we start the cross-validation looping, we have to divide the full data
set into segments. We choose to use 10-fold cross-validation, i.e. we split the
data set into C' = 10 segments:

L <- dim(daily.maxtemp.rad) [1]

C <- 10

idx <- order(daily.maxtemp.rad$Air.temp.max)
daily.maxtemp.rad <- daily.maxtemp.rad[idx,]
daily.maxtemp.rad$Segment <- rep(1l:C,length.out=L)

which means the data.frame daily.maxtemp.rad has been sorted by the Air.temp
.max and then got a new column named Segment. All data objects having the
same value of Segment belong to the same segment.

We can then start the looping:

attach(daily.maxtemp.rad)
# The first loop is over the K-values
for(i in 1:nkK){
cat ("For K=",K.values[i], sep="")
# Then we loop over the cross-validation segments
err <- rep(0,L)
for(j in 1:C){
# Split into (y.test,X.test) and (y.train,X.train)
idx.test <- which(Segment==j)
.test <- Air.temp.max[idx.test]
X.test <- Radiation[idx.test]
y.train <- Air.temp.max[-idx.test]
X.train <- Radiation[-idx.test]

<

H

Predicting y.test, pretending its unknown
y.test.hat <- knn.regression(X.test,y.train,X.train,
K=K.values[i])

# Computing error...
err[idx.test] <- (y.test-y.test.hat) "2
cat(".")
} # next segment...
MSEP[i] <- sum(err)/L
cat ("the MSEP is",MSEP[i],"\n")
} # next K-value

Notice the double looping, since we first have to consider each element in K.
values, and then for each of them consider all possible splitting into test- and
training-sets. This makes the computations slow, and this is also why we add
some cat statements here and there. It is good to see some output during
computations, just to verify that things are proceeding as they should. Here is
the output we get:
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Figure 14.4: The brown dots show the M SFEP values computed for the corre-
sponding choice of K. The shape is typical in the sense that both a too small
and too large choice of K produce larger errors than some ’optimal’ value. In
this case it seems like the optimal choice of K is somewhere between 500 and

1000.

For K=50.......... the MSEP is 31.63935
For K=100.......... the MSEP is 31.17152
For K=300.......... the MSEP is 30.99186
For K=500.......... the MSEP is 30.97284
For K=1000.......... the MSEP is 30.97058
For K=2000.......... the MSEP is 31.4305
For K=3000.......... the MSEP is 32.76581

In Figure 14.4 we have plotted how the prediction error M SEP varies over the
different choices of K. It looks like a K close to 1000 is a good choice for this
particular data set, giving the best balance between a too small K (inflating

the variance) and a too large K (inflating the bias).
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Figure 14.5: The curve shows the relation between radiation and maximum air
temperature as described by the local knn-regression method.

14.3.4 Fitting the final local model

Based on the model selection we choose K = 1000. We can now predict max-
imum air temperature for ’all’ values of radiation within the span of the data
set, using the knn.regression function from above. The result is shown in Fig-
ure 14.5. Notice the differences to the linear model. First, we see that at very
large radiations, there is no longer any impact on temperature, the curve is
flat. This is, however, an artifact of the method, since any moving average will
tend to show ’flatness’ as we move towards the outer range of the explanatory
variables. More important, perhaps, is that at very low radiations the relation
between radiation and temperature is actually reversed! Notice also that in this
region there are a lot of data. In fact, around15% of all the data have radiations
between 0 and 1. What does this mean?

These are daily measurements, and the low-radiation days are all in mid-
winter. At this time of the year an overcast day gives extremely small radiation
(very close to 0), but temperatures are usually not very low. A day with clear
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skies will have slightly larger radiation (close to 1), but at the same time also
very cold weather with lower maximum temperature. Thus, the negative effect
of radiation on maximum temperature is actually present at one out of six days
during a year here at NMBU! This is not something we can ’see’ by plotting
since the data are so dense, and the linear model, that ’looks’ fine to our eye,
will completely obscure this effect.

As a conclusion, we can say that a fine-tuned (by model selection) local
model may detect relations that we otherwise could have missed.

14.4 Exercises

14.4.1 Classification of bacteria again

Expand last weeks exercise on classification of bacteria, and implement a cross-
validation to estimate the CER (classification error rate). Use the code from
the radiation-maxtemp example above. Try different choices for K to see (ap-
proximately) which choice of K is optimal. HINT: Try small values for K.

14.4.2 Faster computations

Cross-validation can be time-consuming, and we should make efforts to speed
up the code as much as possible. In the procedure sketched in this chapter we
have two loops. The outer loop is over the different values of K, the inner loop
is the cross-validation. This can be improved.

In the inner loop we use a KNN-type of method, and the slow part of such
methods is the computation of all the distances. If we are going to predict the
response for data object i, we must compute the distances from this to all data
objects of the training set. Notice that this is first done once for the first choice
of K, then it is re-computed again for every new choice of K that we try out!
These are exactly the same distances, and it is silly to re-compute them.

Instead we eliminate the looping over the K-values, i.e. the outer loop is the
cross-validation. Then, for each cross-validation segment, we try all K-values.
This means the function we use (knn.classify) should be modified to take as
input a vector of K-values instead of a single value. Then, after the distances
have been computed, the classification is done for each choice of K, and all
results are returned as output. Try to make this modification to the code from
the exercise above.
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