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Multivariate feature extraction from textural images of bread
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Abstract

In order to compute the classical texture measures there is often a need to perform extensive calculations on the images
and do a preprocessing in a specialised manner. Some of these texture measures are constructed to estimate specific informa-
tion. Other texture measures seem to be more global in nature. The techniques presented in this paper define algorithms ap-
plied on the raw image without extensive preprocessing. We want to show that mathematical transformations of images on a
vectorised form will easily enable the use of multivariate techniques and possibly model several features hidden in the im-
ages at the same time. In this paper we will compare five different methods of extracting features from textural images in
food by multivariate modelling of the sensory porosity of wheat baguettes. The sample images are recorded from factorial
designed baking experiments on wheat baguettes. The multivariate feature extraction methods to be treated are the angle

Ž . Ž . Ž .measure technique AMT , the singular value decomposition SVD , the autocorrelation and autocovariance functions ACF
Ž .and the so-called size and distance distribution SDD method. The methods will be tested on equal basis and the modelling

Ž .of sensory porosity from extracted features is done using principal component regression PCR and partial least square re-
Ž .gression PLS . The difference between the behaviour of the methods will be discussed. The results show that all the meth-

ods are suited to extract sensory porosity but the AMT method prove to be the best in this case. q 1998 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The traditional use of sensory analysis to measure
food quality has shown to be very useful in many

w xpractical cases 1,2 , but it is both time-consuming
and expensive. This has motivated the development
of alternative techniques for more rapid and efficient
measurement of key characteristics of the products.
Image analysis is one such interesting technique. Ap-
plications of image analysis in measurement of food
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quality have already shown to be a promising area of
w xresearch 3–5 , and are expected to be of significant

practical importance in the coming years. The focus
of the present paper will be on a specific area of im-
age analysis—analysis of textures—and its relation-
ship to sensory measurements.

Traditionally, analysis of textural images has been
based on counting objects, measuring object areas and
on combining such information in different ways
w x6,7 . These approaches are closely linked to a physi-
cal understanding of the texture measures and are of-
ten handled by univariate techniques. Recent re-
search has, however, focused more strongly on ex-
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tracting features by analysing the pixel distributions
directly without any special attention given to the ob-
jects in the image. Such approaches are typically
multivariate in the sense that they extract a whole

w xvector of features from each image 8–10 . Multi-
variate statistical analysis is therefore required in or-
der to understand the relationship among the vari-
ables and to find relationships to external sensory
variables.

In the present paper we will present and compare
a number of alternative multivariate feature extrac-
tion methods. Most of the methods have been pub-
lished and discussed elsewhere, but in some cases we
make modifications to make them more suitable for
the present application. The comparison of the meth-
ods will focus on their ability to predict externally

Ž .measured sensory texture variables. The images
used in the study are recorded from wheat bread
baguettes produced from different flour varieties and
by using different baking conditions. Although there
is a manifold of articles in the literature on analysis
of texture images, there seems to be very few com-
parisons of this kind. Our goal is also to show that
images taken in robust environments when it comes
to lighting conditions should be possible to model
with little or no preprocessing.

The multivariate feature extraction methods to be
treated below are: the angle measure technique
Ž . Ž .AMT , the singular value decomposition SVD , the

Ž .autocorrelation and autocovariance functions ACF
Ž .and the so-called size and distance distribution SDD

method. The SVD and AMT methods have already
shown very promising results in the characterisation

w xof sensory attributes 4,11 . The ACF method has
been proposed elsewhere for texture analysis, but
seems to have obtained little attention in the litera-
ture, especially so in the more applied area. The SDD
method is a new and multivariate analogue to estab-
lished methods for analysing object sizes and their
distribution. Instead of looking at either the sizes or
distances separately, the method brings both aspects
into consideration simultaneously. Although not nec-
essary for computing any of the above mentioned
feature vectors, all the methods are most naturally in-
troduced by assuming the images are isotropic and

w xstationary 12 . To have an objective comparison be-
tween the different feature extraction methods we
have decided not to optimise the single methods.

The relationship between the feature vectors ob-
tained by the four different methods and the sensory
attribute porosity will be obtained by the linear re-
gression methods PCR and PLS. No attempts in the
direction of nonlinear modelling will be tried. The
PLS and PCR are data compression methods espe-
cially useful for collinear spectral data which will be
a problem for all the feature extraction methods con-
sidered here.

2. Experimental

2.1. Design, materials and methods

2.1.1. Dough preparation and processing
Wheat baguettes were produced with a defined

w xrecipe described in Ref. 13 . An experimental design
with four factors was used. The factors were flour

Ž . Ž .quality four levels , mixing time two levels , proof-
Ž . Ž .ing time two levels and baking process two levels .

The levels were combined in a full factorial experi-
Ž .ment 32 experiments . A total of 10 baguettes were

produced for each of the 32 combinations of factors.
Each baguette was divided in two. Half portions from
each of the 10 baguettes were sent to sensory analy-
sis. Ten sensory assessors got one-half each. The av-
erage over assessors was used as the reference value.
Since the present paper is a study of feature extrac-
tion methods, we decided to concentrate on only one
of the sensory attributes, namely porosity. Three of
the 10 baguettes were used for image analysis. This

Žgave three independent images three replicated mea-
.surements for each of the 32 combinations of fac-

tors. In other words, 96 images were recorded. An
overview of the experiment is given in Fig. 1.

2.1.2. Sensory reference Õalues
Baguettes were analysed by conventional sensory

profiling using 10 trained panellists. Members were
selected and trained according to guidelines in ISO
6564:1985-E and ISOrDIS 8586-1:1989. Panellists
developed a lexicon by describing differences be-
tween extreme samples and developed a consensus
list of 13 sensory attributes for profiling. These were
glossiness, brittles of the crust, porosity, surface of
characteristic cuts, elasticity, intensive odour, fresh
smell, intensive flavour, fresh flavour, salt flavour,
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Fig. 1. Construction of image series used in calculations.

firmness, juiciness and crispness of the crust. Panel-
lists were trained in use of definitions of sensory at-
tributes and rating anchors by pretesting extreme
samples. Each panellist was given one-half baguette
on a white dish. A continuous nonstructured scale was
used for evaluation. The left side of the scale corre-

Ž .sponded to the lowest intensity value 1.0 and the
Žright side corresponded to the highest intensity value

.9.0 . Evaluations were done in a laboratory equipped
as described in ISO 8589:1988-E. Each panellist
evaluated the samples at individual speed on a com-

Žputerised system for direct recording of data CSA
.Compusense, version 4.2, Canada . Samples were

served in randomised order. No replicates were done.
In this paper we use only the sensory porosity as ref-
erence value. Thus for each replicate block of im-

Žages, there are the same sensory porosity values the
.mean over assessors, Fig. 1 .

2.2. Image measurements

The images were produced using a Canon EX2
video camera and recorded with the ScreenMachine
II frame grabber. The signal from our camera was
composed of separated luminance and chrominance

Ž .signals YrC . Experimentation with the light condi-
tions led us to use 458 illumination from both sides.

The objects were illuminated using four tungsten
lamps, two from each side.

The recorded images were recorded in true colour
at 512=512 pixel resolution and converted to 256
level grey scale. The images of the baguettes were all
centred using a thresholding technique along with
calculations of the centre of gravity of the image, a
central rectangular cut-out and a resizing to obtain a
256 = 256 greyscale image. The images were en-
hanced with a 3 = 3 unsharp mask. The unsharp
masking is the general process of subtracting a

w xblurred image from an original 14 . The illumina-
tions of the samples introduced slight light gradients
due to the 458 illuminations from both sides. Intro-
duction of a light gradient is often needed to enhance
the pore structure. With these controlled lighting
conditions, however, the levels of the mean pixel
values of the grey level images may vary slightly due
to different colours of the flour being used and also
the treatment by the baking process. The samples had
in fact different lightness which led to small differ-
ences in mean pixel intensity. The images could have
been normalised in some way but was not done. Typ-
ical representative images of different textures are
shown in Fig. 2. The samples are selected to span the
porosity space. Samples 5, 15, 26 and 12 ranges from
low to high degree of porosity. The corresponding
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ŽFig. 2. Representation of four images with different porosity sam-
.ples 5, 15, 26 and 12 clockwise from upper left recorded for one

datablock.

images will be given special attention for the differ-
ent feature extraction methods discussed later in this
context.

2.3. Selection of calibrationrÕalidation sets— calcu-
lations

In this paper, no attempt was made at treating the
32 samples as representatives from a population of
samples. Instead the 32 combinations of factors were
themselves treated as the actual population of inter-

Žest. The sensory reference value average over asses-
.sors was considered the true porosity value for each

of the factor combinations. The present study is pri-
marily a comparison of alternative feature extraction
methods in their ability to provide valid information
about this porosity. Therefore, the following cross-
validation procedure was used for testing validity of
the feature extraction methods. Each of the three in-
dependent image replicates were treated as three in-
dependent measurement series of the ‘population’ of
interest. Each of the three independent series were
treated as a cross-validation segment. In each cross-

Ž .validation run 3 in total , 64 samples were used for
calibration and 32 for testing. In this way, each repli-
cate was treated in two calibration segments and one

test segment. Note that when this strategy is used, no
biological variation is part of the cross-validation,
only variability among the replicated images. In other
words, the variance in each RMSEP reported is due

Ž .to measurement noise in X the feature vector only.
The calculations were carried out using Refs.

w x15,16 by Camo ArS and Watcom Cqqe.

3. Methods

( )3.1. Singular Õalue decomposition SVD

For a technical description of the SVD algorithm
w xwe refer to Ref. 17 . In our approach the image is

considered as a matrix of pixels ordered in rows and
columns.

Ž .Consider the image A of size m=n . The SVD
theorem states that there exists unitary orthogonal

Ž . Ž .matrices U and V of size m=r and n=r , re-
Ž .spectively, and a diagonal matrix S of size r=r

Ž .where r is the rank of A such that

AsU S V X . 1Ž .
� 4The matrix Ss s is considered to be a generalisedi j

Ž w x.spectrum of the image Kvaal et al., 1996 4 . The
matrix S can be written as

s 0 0 0 01,1

0 .. 0 0 0
Ss . 2Ž .0 0 .. 0 0

0 0 0 .. 0� 0
0 0 0 0 sr ,r

The singular values are sorted in descending order.
By applying the SVD on the image A this is analo-
gous to estimating the principal components of an ar-
bitrary data-matrix, using the rows and columns of A
as objects and variables respectively. The singular

Ž .value SVD spectrum l of an image is by definition
the vector of diagonal elements from S:

lsdiag S . 3Ž . Ž .
Here we will use a limited number of factors to model
the actual sensory porosity, thus use a truncated ver-
sion of the SV-spectrum:

l sdiag S pFmin m ,n 6Ž . Ž .Ž .Ž .p p
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Ž .The SV-spectra l 1 F i F k estimated using ppi

factors from a set of k images can be arranged row-
wise in the matrix L containing the transposedp

vectors l
X as its rows:p i

X
L s l , l , l , . . . l . 7Ž .p p1 p2 p3 pk

The singular values of images representing bread
slices in this case have been reported to contain in-

w xformation of the image texture 4 .

3.1.1. Implementation
The SVD was applied to each of the 96 images.

Fig. 3 shows examples of different SV-spectra for the
four selected images shown in Fig. 2. These are im-
ages selected to represent low, medium and high sen-
sory porosity. Image 12 represents big extreme holes.
This is shown in Fig. 3. Log plot of the singular val-
ues is used to better separate the SV-spectra from
each other.

( )3.2. Angle measure technique AMT

Ž .The angle measure technique AMT was intro-
w xduced in 1994 18 as a new method to characterise

the complexity of geomorphic lines. AMT was de-
signed to delineate changes in complexity of a geo-
morphic feature as a function of scale. We will use
this approach by applying the AMT technique on an
unfolded image to characterise periodic variations in
the unfolded image pixel values. The AMT approach
has profound implications for analysis of both 1-D
and 2-D signal series containing a considerable
amount of noise. AMT characterises the noise part as
well as quasi-periodic phenomena of a measurement
series in a novel fashion as a function of a scale-fac-
tor, s. For a more extensive explanation of the AMT

w xused in chemometric modelling we refer to Ref. 11 .
The AMT is implemented by the mean angle rep-

resentation computed at a fixed scale and sampled at

Ž .Fig. 3. The SV spectra of the four selected images of Fig. 1 are shown as a plot of the log l against the singular value index. The SV
spectrum of the low degree porosity is in the uniform random distributed region and the SV spectrum of the image with distinct holes is in
the normal random distributed region.
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Ž .a large number of points in the unfolded vectorised
Žversion of an image. By an unfolding of an image

A, we mean the vector obtained by aligning the
w x .pixel-rows of A sequentially after each other 19 .

The AMT spectrum is in this manner a function of the
scale-factor s. This is shown in Fig. 4.

Ž .Consider the image A of size m=n . The corre-
sponding vector is A of length lsmn. The elements
of A range from a to a corresponding to themin max

range of the pixel values in the original image A. Let
P be a randomly chosen entry of the vector A. Leti

A and B be the points of intersection between thei i

circle with radius s and the line constructed from the
elements in A. Let a be the supplement angle be-i

tween the lines A P and P B calculated at point P .i i i i i

Then the AMT spectrum is defined by

a s s1rM a 8Ž . Ž . Ž .Ý i s
is1, M

where M is the number of random points sampled
Ž .from A and a is the angle calculated at point Pi s i

with scale-factor s. It is often necessary to scale A to
obtain an optimal mean angle distribution. The nor-
malised A) is defined by

) < <A sk Aya r a ya 9Ž .Ž .min max min

Ž .where k is a scale factor to choose and Ayamin

means element-vice subtraction of the constant a .min

The minimum and maximum pixel values of the ma-
trix A are given by a and a . This normalisa-min max

tion makes A) scale independent and is often pre-
ferred before the raw vector A. The factor k will have
to be determined from a pragmatic point of view.

Fig. 4. The AMT spectrum is produced by the mean of several an-
gle measurements along the curve as a function of the radius s in

Ž w x.a set of random points Esbensen et al., 1996 11 .

Normally k is chosen in such a way that the AMT
spectrum ranges from 08 to 1008. In some instances it
is preferable to use only a scaled fraction, k, of the
raw vector.

3.2.1. Implementation
An image A of size 256=256 pixels is vectorised

into A where lsnms256=256s65536, a s0,min

a s255. The AMT was applied to each of the 96max
Ž .images by selecting P , is1000 random points andi

calculating the mean angle by varying the scale s in
steps from 1 to 256. The vector was multiplied by k
s 0.5 to give a reasonable maximum mean angle
range of 0–100. The randomisation was performed
with different random seeds. Fig. 5 shows examples
of AMT spectra for the four different images in Fig.
2. The unfolding technique used in this work will in-
troduce a discontinuity at each 256th index point in
the unfolded vector. In the AMT spectrum this will
give a break point at every 128 scale value. Fig. 5
shows this situation. Systematic runs have shown that
the visibility of the break point at every 128 scale
value is less dominant as the constant k increases.
The ‘Y-space’ scaling by selecting a proper value for
the constant k is a part of an ongoing investigation

Ž .of the effect s of different ‘Y-space’ scalings on the
resulting AMT spectra. The discontinuity effect will
be modelled as noise and will have no relevance to

Ž . w xthe reference sensory porosity 11 .

( )3.3. The autocoÕariance ACOV and autocorrela-
( )tion ACOR spectra

The Autocovariance and Autocorrelation spectra
are attractive as multivariate features both because of
their statistical interpretations as well as their poten-
tial of reflecting characteristic information of differ-
ent textures. Texture-images containing large areas of

Ž .small local variation sample 26 of Fig. 2 generate
slowly decaying spectra, while texture-images with

Ž .globally dominant local variation sample 5 of Fig. 2
will generate a faster decay. Fig. 6 shows the ACOV
spectra for the four images of Fig. 2. Note that these
spectra by definition include the magnitude of varia-
tion of the corresponding images. Fig. 7 shows the
ACOR spectra of the same images, which are simply
the ‘scale-free’ version of Fig. 6, suppressing the in-
formation on image-variance. The relationship
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Fig. 5. AMT spectra estimated from the representative four images of Fig. 1. The degree of porosity is clearly distinct and visualised in the
spectra.

Fig. 6. Autocovariance spectra corresponding to the images of Fig. 1.
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Fig. 7. Autocorrelation spectra corresponding to the images of Fig. 1.

Ž . Ž . Ž .ACOV A sVar A =ACOR A express the formal
correspondence between the two spectra. Here

Ž .Var A is the magnitude of variation of an image A.
Which spectrum to prefer will depend on the re-
sponse-variables dependency and sensitivity to the
between-image variation.

The autocorrelation spectrum in terms of image
w xanalysis tradition 20 is defined as the empirical sec-

ond moment of the noncentred and nonscaled image,
and consequently different from its statistical ana-
logue, but modulo an obvious linear transformation
the two definitions are equal. By convention we will
use here a statistical definition of the 2-D

Ž .ACOV A :Žm ,n.

def
ACOV A s 1rK A j,k ymŽ . Ž .ÝŽm ,n.

j,k

= A jqm ,kqn ym , 10Ž . Ž .
Ž .where m is the mean pixel value of A and m,n cor-

responds to a shift of the image by m rows and n
columns and K equals the number of overlapping
pixels between the shifted and the original image. As

implicitly stated above, the statistical interpretation of
this formula formally requires assumptions of sta-

Ž .tionarity insensitivity to choice of origo . If isotropy
Ž .insensitivity to orientation is also assumed, only the

2 2 Ž .(integer magnitude rf m qn of the shift m,nŽ .
is relevant, and we can simplify the formula and ob-
tain a 1-D version of the ACOV spectrum:

def
ACOV A s 1rLŽ . Ýr r

2 2�Ž . Ž . 4'm ,n :rf m qn

=ACOV A 11Ž . Ž .Žm ,n.

Here rfx means the integer r closest to x and Lr
�Ž .equals the number of elements in the set m,n :r

2 2 4(f m qn . Furthermore, the ACOR spectrum isŽ .
defined as the ACOV spectrum divided by its first
entry:

def
ACOR A s ACOV A rACOV A . 12Ž . Ž . Ž . Ž .Ž r . r 0

Ž Ž . Ž . .For completeness, note that ACOV A sVar A .0

Even in more general situations where assumptions of
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isotropy and stationarity are invalid, both ACOV and
ACOR can still be computed as direction-indepen-
dent characteristic features.

Ž .The definition of ACOV A directly applied toŽm ,n.
large images leads to extensive computations. A
mathematical argument using the Fourier transform
and a computer-program executing the fast Fourier

Ž .transform FFT , however, offers a sufficiently fast
estimation-procedure even in the case of image size
256=256. For a theoretical deduction of this result

w xthe reader is referred to Ref. 21 , chapter 10. The
authors present a 1-D argument that can easily be ex-
tended to the 2-D case required for images. A Mat-
lab-routine implementing the FFT-based version for

Ž . w xestimating ACOV A is given in Ref. 22 .Žm ,n.
Estimation of the ACOV and the ACOR spectra

could also be based on a vectorisation of the images
following the strategy of the AMT method. By a
row-wise vectorisation we will implicitly focus ex-
clusively on the horizontal structure and ignore the
texture-information in other directions. Except for the
possibly disturbing edge-effects of this strategy, the
resulting spectrum should be identical to exclusively
using the horizontal direction of the 2-D ACOV and
ACOR spectra. Thus a vectorisation can very well be
advantageous if the assumption of isotropy fails, but
the texture of the images considered are arranged to

Žhave identical orientation which indeed is the case
.for the data-set presented here .

3.3.1. Implementation
The images of size 256=256 pixels were loaded

into MATLAB version 4.2. The fast implementation
Ž . w xof Eq. 10 described in Ref. 22 , resulted in 2-D

Ž .ACOV spectra. Via Eq. 11 with rs128, 1-D di-
rectional-independent spectra were derived. The
ACOR spectra were obtained by division of each
ACOV spectrum by its corresponding first entry.

( )3.4. Size and distances distributions SDD

A well-known method to present structural infor-
mation from images of our kind is to extract texture
primitives and quantify their characteristics, such as

w xmean pixel intensity, size and shape 23,24 . Such a
technique can be efficient if the images consist of
well-defined textural elements which are easily seg-
mented. In our case it is obvious that porosity is re-

lated to size and the number of poresrcm2. This in-
formation can be extracted for each image as the dis-
tribution of pore sizes and the distribution of dis-
tances between all pores, represented as two his-
tograms.

Using only these two histograms for multivariate
calibration suffers from the limitation that they carry
no information regarding the relation between the in-
ternal distances and their corresponding pore sizes.
That is, the above extracted data do not reflect
whether pores of different sizes are for instance
evenly distributed or clustered in some fashion. One
way to establish such information is to compute a re-

Ž .lationship for instance difference or ratio between
the pore sizes of each pair of pores and relate this to
the corresponding distance between the pores. For
each image we can then compute the average pore-
size relation as a function of distance. By combining
the resulting curve with the distance and size his-
tograms we may have obtained a data set containing
sufficient information for successful prediction of
porosity.

3.4.1. Implementation
The images were imported into the software pro-

gramme Image-Pro Plus as 8 bit greyscale bitmap
files. The pores were mainly defined as the areas with
pixel intensity below the threshold 155. However, the
level of the mean pixel values of the grey level im-
ages may vary slightly due to different colours of the
flour being used and also the treatment by the baking
process. The threshold was therefore set manually for
each of these images, guided by the mean pixel in-
tensity, resulting in a threshold varying from 140–
165. The lowest limit in size for what was counted as
a pore was set to 1 pixel. After thresholding, a ma-
trix was automatically generated for each image con-

Ž .taining the size number of pixels and centroid coor-
dinates for each pore. A program written for Matlab
computed the distances between the pores and gener-
ated the histograms. Since the differences in pore size
were very large, we generated the histogram of the

Ž .natural logarithm of the sizes, ln size . Figs. 8 and 9
show the two histograms generated from the four im-
ages in Fig. 1. The histogram of distances reaches
high values when the number of pores in the image
is large, as in sample 5. The histograms describing
samples 12, 15 and 26 have differences in shape and
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Fig. 8. Histograms of the distances between the pores of the corresponding images of Fig. 1. Bin size is set to 4.

Ž .Fig. 9. Histograms of the ln area of the corresponding images of Fig. 1.
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Ž .Fig. 10. Histogram of differences in pore size as a function of distance between the pores, D d , of the corresponding images of Fig. 1. Bin
size is set to 5.

Ž .Fig. 11. Histogram of ratios of pore size as a function of distance between the pores, R d , of the corresponding images of Fig. 1. Bin size
is set to 5.
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level, but are small compared with sample 5. Fig. 8
shows that sample 5 contains a large amount of small
pores. The very small responses above 6 correspond
to the big pores in samples 12 and 26.

The relation between pore size as a function of
distance was computed as follows: In a 256=256
pixel image the distance between two pores can range
from 2–362. This range was divided into a number

Ž .of intervals histogram bins of fixed size. For all
distances within a given interval, the ratios and the
absolute value of the differences between the pore
sizes for the corresponding pore pairs were accumu-
lated and divided by the number of distances within

Ž .the interval. For each image, this created: 1 the av-
erage difference between pore sizes as a function of

Ž . Ž .distance, D d , and 2 the average ratio between
Ž .pore sizes as a function of pore distance, R d . Fig.

Ž . Ž .10 shows D d and Fig. 11 shows R d for the im-
Ž . Ž .ages in Fig. 1. The trends in R d and D d are quite

similar. The histogram of sample 5 reflects small dif-
ferences in pore size and that the pores are evenly
distributed. The differences in pore size of sample 15
is bigger, giving a histogram of higher level, and the
flat shape corresponds to an even distribution. Sam-
ples 12 and 26 both contain big and small pores re-

Ž . Ž .sulting in large values of R d and D d . The rela-
tively great variations in these histograms are due to
unevenly distributed pores.

4. Multivariate calibration

All the above feature extraction methods provide
Ž .a data vector X for each image. The focus in the

present paper is to compare the ability of the differ-
ent methods to predict external reference measure-

Ž .ments of texture Y, in this case porosity . This is a
typical multivariate calibration or regression prob-
lem. In mathematical terms, the problem can be stated
the following way: Given measurements of both X

Ž .and Y for a number of samples in this case images ,
then build a relationship between them. The relation-
ship can be used to predict Y from X and also to
understand more about the relation.

In this paper we will only focus on linear rela-
tions, but more sophisticated methods based on, for
instance, neural networks and locally linear models

can also be envisaged. A linear regression model can
be defined as follows:

ysb qb x q . . . qb x qe 13Ž .0 1 1 K K

where the b’s are regression coefficients to be esti-
mated from the X and Y data for the calibration set
of samples.

In the application to be presented below, the num-
ber of X-variables is larger than the number of sam-
ples and the correlations among some of the different
X-variables are generally very high. This implies that
standard least square regression can not be used for
estimation of regression coefficients. The problem is

w xcalled the collinearity problem 25 .
Regression methods based on so-called data com-

pression are often used to provide good relationships
in the case of collinearity. They are shown to be well
behaved in practice and can also be used to provide
information about the relationship between X and Y.
In this paper we will focus on two of the most well-
known methods among the data-compression meth-
ods, namely PCR and PLS. The PCR uses PCA for
data and regresses Y on the principal components
from X. Data compression based on PLS uses Y as
well in the estimation of components. This can some-
times lead to more parsimonious models, which can
be useful for interpretation, but from a prediction
point of view the two methods are usually quite simi-
lar. In the present paper main focus will be given to
PCR, but some results from PLS will also be given.

We can then say that the data compression from
the images goes through two steps, one for extracting

Ž .features data from the images and one for extract-
ing the main information from the feature vector.

Ž .The testing of the quality of the Eq. 13 will in
all cases be performed by cross-validation. The vali-
dation structure is described at the end of Section 2.

The measure of the fitness of the model is given
by R2 which is the square of the square of the corre-

Ž .lation of y and y cross-validated where y is theˆ
reference sensory porosity and y is the predictedˆ
porosity.

5. Results

The comparison between the different feature ex-
traction methods is carried out without optimising the
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single methods. We have chosen this automatic ap-
proach to compare the methods as independent as
possible. It is often the practice to do data transfor-
mations according to a specific data structure to ob-
tain better performance. In the PCR and PLS mod-
elling there has not been any weighting transforma-
tions. Preprocessing like logarithmic transformations
has not been done. In some instances such prepro-
cessing is preferable and in our case might well lead
to better performance for some of the methods. We
have also investigated the potential of selecting dif-
ferent variable ranges. This is due to the fact that
some methods need to focus on a subset of the total
number of variables. All methods have the same
range selections and thus not necessarily optimal for
the each method. Ranges are selected from zero and
to the number of variables in scope. No subranges
were selected.

5.1. Results for the SVD

Table 1 shows the results of PCR and PLS mod-
elling of porosity with the SVD representation of the
images. By using the cross-validation method sug-
gested the porosity is best explained after 6, 5 and 2
factors for the high, medium and low number of
variables used. The porosity is best explained in PLS

modelling at 5, 5, and 1 factors, respectively. The
root-m ean-square error of cross validation
Ž .RMSECV is optimal at five components for both
PCR and PLS using 100 variables. At 10 variables the
RMSECV is much higher. The correlation factor re-
flects this tendency and gives 0.82 as correlation
when all variables are in use. Sensory data will usu-
ally be somewhat noisy, so a correlation equal to 0.82
is a very high value. When compared with results ob-
tained in a previous work, we found that there is a

w xpotential for an enhancement of the SVD method 4 .

5.2. Results for AMT

The results of the AMT method are shown in Table
1. The results of PCR and PLS modelling of porosity
are about equal when using high and medium num-
ber of variables while PCR is less precise than PLS
when using a low number of variables. By using the
cross-validation method suggested, the porosity is
best explained after 7, 5 and 3 factors for the high,
medium and low number of variables used using
PCR. The porosity is best explained in PLS mod-
elling at 4, 4, and 3 factors, respectively. The RM-
SECV is optimal at five components for both PCR
and PLS using 100 variables. At 10 variables the
RMSECV is significantly lower. The correlation fac-

Table 1
Results from the different methods compared

Ž .Method Dataset No. of variables Opt. No. PC RMSECV 3 segments Correlation R

Ž . Ž . Ž .ACOR ACOR50 50 2 2 1.05 1.05 0.78 0.78
Ž . Ž . Ž .ACOR30 30 2 2 1.04 1.05 0.78 0.78
Ž . Ž . Ž .ACOR10 10 5 5 1.00 1.00 0.80 0.80
Ž . Ž . Ž .ACOV ACOV50 50 5 4 1.06 1.05 0.77 0.78
Ž . Ž . Ž .ACOV30 30 4 4 1.02 1.02 0.79 0.79
Ž . Ž . Ž .ACOV10 10 6 4 0.91 0.95 0.84 0.82
Ž . Ž . Ž .AMT AMT256 256 7 4 0.75 0.73 0.90 0.89
Ž . Ž . Ž .AMT100 100 5 4 0.77 0.76 0.89 0.89
Ž . Ž . Ž .AMT10 10 3 3 0.84 0.84 0.86 0.88

Ž . Ž . Ž . Ž .SDD R d qDD 103 10 5 0.80 0.79 0.88 0.89
Ž . Ž . Ž . Ž .R d qDD 26 12 6 0.87 0.88 0.85 0.85
Ž . Ž . Ž . Ž .R d qDD 13 8 4 0.93 0.97 0.83 0.81

Ž . Ž . Ž .SVD SVD256 256 6 5 0.97 0.96 0.82 0.82
Ž . Ž . Ž .SVD100 100 5 5 0.98 0.96 0.81 0.82
Ž . Ž . Ž .SVD10 10 2 1 1.25 1.24 0.66 0.67

The results are from systematic cross-validation in such a way that each replicate image block is used as a test set once. Results for PCR and
PLS are shown.
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Fig. 12. The predicted porosity from the cross validation from the AMT method with all variables present. The object points are labelled
with the corresponding baking method. We observe the classification of baking method.

tor reflects this tendency and gives 0.90 as correla-
tion when all variables are in use. When compared to
the SVD method this also indicates a very good
modelling of the sensory data despite the noise level
of such measurements. The predictions of porosity
obtained from the AMT method are shown in Fig. 12.
We observe that the feature extraction from images is
capable to do a classification of both baking method
and porosity.

5.3. Results for ACOV

Table 1 shows the results of PCR modelling of
porosity with the autocovariance function representa-
tion of the images. Depending on the number of vari-
ables used from the spectra, porosity is best ex-
plained by 4–6 factors with correlations in the high
70s and low 80s of predicted vs. true porosity. The
corresponding RMSECVs are found to be in the range
0.90–1.05. Using only the first 10 variables of the
ACOV spectrum seems to give slightly better mod-
els.

5.4. Results for ACOR

The results of PCR modelling of porosity with the
ACOR function representation of the images tends to
be slightly poorer than for the ACOV function indi-
cating the variance within each image to contain some
extra information about porosity. For both 30 and 50
variables two factors give the best results, while for
10 variables five factors are preferred. Also the cor-
relations for the ACOR are in the high 70s and low
80s of predicted vs. true porosity. The corresponding
RMSECVs are found to be in the range 0.99–1.05.
There is however a tendency of slightly poorer re-
sults compared to modelling with ACOV spectra.
Also here using only the first 10 variables seems to
give better models.

5.5. Results for SDD

The four histograms generated gave quite differ-
Ž .ent results. The distribution of distances DD ob-

tained a correlation of 0.67 with sensory porosity. The
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Ž .distribution of sizes DS performed better with a
correlation of 0.80 whereas the average difference

Ž Ž . Ž ..and ratio as a function of distance D d and R d
performed best with correlations of 0.82 and 0.84 us-
ing seven factors. By combining the histograms in all
possible ways, it turned out that a combination of DD

Ž .and R d resulted in the lowest RMSECV of 0.80 and
a corresponding correlation of 0.88 with sensory

Ž . Ž .porosity. As long as R d or D d was combined
with DD, correlations up to 0.88 were obtained,
combined with DS they were about 0.85.

The results listed above were achieved by using
Ž .histograms with bin size s 1, i.e., DD, D d and

Ž .R d were vectors of length 361. To reduce the data
sets and processing time the bins in each histogram

Ž . Ž .were increased. A bin size of 5 for R d and D d
resulting in 71 variables each and a bin size of 12 for
DD giving 32 variables, maintained the above re-
sults. Table 1 shows the results of the combination of
Ž .R d and DD. A further decrease in the number of

variables led to slightly bigger prediction errors.

6. Discussion

We have shown that it is possible to extract fea-
tures from images of a porous structure and model
these to corresponding sensory attributes when using
this design. The results should, however, be more
general when our example is regarded as a popula-
tion of all possible examples. The process of doing a
straightforward modelling of the whole sample of
images and predicting features of new unknown
samples is very promising for on-line applications of
the food industry, among several applications. This
process is uncomplicated when compared to tradi-
tional texture derivation and analysis. The mean sen-
sory porosity has been used to represent each sam-
ple’s porosity and not the actual value of each sam-
ple. This will probably lead to better performance of
the models, but this has no impact on the comparison
of the modelling techniques.

The results listed in Table 1 state that to extract
feature vectors from the images and then model these
by multivariate methods is a powerful approach for
extracting desired information from images. It must
be pointed out that sensory data usually are quite

noisy and that a correlation of about 0.9 is the maxi-
w xmum obtainable 26 . Therefore both AMT and SDD

must be considered as successful methods. Fig. 13
shows the RMSECV for the methods in the test. Be-
sides obtaining the lowest RMSECV, the AMT
method needs only seven principal components to
explain the variation in the sensory data. This indi-
cates that the AMT is more robust and is also re-
garded as the best method for this application. Fig. 12
shows the predictions from the cross validations of
sensory porosity for the best method, AMT. We also
observe that it is possible to use this plot as a classi-

Ž .fication of the treatment baking process the bread
samples are produced with. This verifies that it is
possible to monitor more features at the same time in

w xthe modelling 4 . In on-line applications this is
preferable.

The unfolding technique used to produce the AMT
spectrum introduces a discontinuity at each 256th in-
dex point in the unfolded vector. This has clearly no
effect as it will be modelled as noise and hence is of
no relevance to the modelled sensory porosity. We
conclude this from the fact that there is about the
same correlation when using 256 variables as with
100 which is less than 128 where the effect is intro-

Ž .duced in the AMT spectrum Table 1 .
It is, however, important to realise that the mod-

elling goodness of any extracted spectrum will de-
pend heavily upon the nature of the images subject to
analysis. The choice of method must necessarily be
based upon some heuristic considerations. Experi-

w xence from a related paper 22 together with the re-
sults presented here indicate that while the AMT and
SVD spectra seem superior for more irregular struc-

Ž .tures typical for the texture of bread the ACOR
method perform well for images containing periodic

Žphenomena such as bulbs of fat in the microstruc-
w x.ture of mayonnaise 22 .

The modelling of images by the use of feature
vectors and further modelling with multivariate
PCRrPLS techniques illustrates the different com-
pression levels in the modelling process. When the
features are extracted to give rise to a spectrum there

Ž .will be an image level noise ILN to take into ac-
count. This is illustrated with the SVD method by the
compression of images to produce the SVD feature
spectra. The residual images described by the feature
extraction will give an indication of the ILN and how
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Fig. 13. The RMSECV representing the AMT, SVD, ACOR, AVOC and SDD methods at optimal performance. The AMT method performs
best relative to the ACOR and SDD. The ACOR method was calculated with less factors than AMT and SDD.

many factors to take into account at this level. The
optimal number of factors at this level is reflected in

w xthe different results of model ability in Table 1 4 .
When the next step of modelling is performed there

Ž .will be a model level noise MLN which describes
the residuals between the feature vector models and
the true sensory porosity.

The process of choosing the variables to be used
in the final modelling step is important to consider.
The ILN should not be input to the PCRrPLS mod-
elling of the sensory attributes. By reducing the ILN
in front of modelling, it is possible to enhance the
model performance. Of the image vectors we have
used ACOV and ACOR seem to perform better when
the last 40 variables are ignored, indicating that these
variables are noisy. In SVD and AMT spectra, on the
contrary, all variables in the full spectra seem to con-
tribute more or less positively to the models since
performance decreases with decreasing number of
variables. In the SDD approach we reduced the vari-
ables by increasing the bin sizes which led to greater
RMSECV. There may be a potential of improvement
to keep the bin sizes narrow, detect possible noisy

parts of the spectra and remove these from the his-
togram.

Each method has a possible potential of making a
better performance in modelling the sensory poros-
ity. We have compared the methods by not doing any
optimisation or preprocessing especially designed for
any of the feature extractions. In this way we have
made the foundation of each calculation for each
method as equal as possible. As mentioned and as the
results illustrate, better results may be obtained by
modelling subsets of the data, thus avoiding possible
noise. Other improvements of the methods could be
preprocessing of the images with special texture en-
hancing filters.

The SDD method is not a well explored extraction
method. Other types of relationships rather than dif-
ferences and ratios of pore sizes may be more appro-
priate to represent the desired information. Regard-
ing other applications the choices of representation
should be problem dependent.

The SDD spectra are quite easily interpreted when
related to the pictures. Compared to the other meth-
ods the spectra can be more intuitively understood
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which is an advantage for understanding the perfor-
mance of the method.

All the feature vectors can be effectively com-
puted from raw images. The SDD method as carried
out here involved preprocessing of the images in
which manual setting of the global threshold for each
image was the most time-consuming and subjective
part. There exists, however, a variety of thresholding

w xtechniques 27 which can be applied to automati-
Ž .cally compute the optimal threshold global or local

for each image guided by specific criteria. If the im-
ages suffer from varying levels of mean pixel inten-
sities, they should be standardised by a well-defined

w xmethod 20 . The whole procedure of generating the
SDD histograms can then be quick and automatic. A
more objective segmentation may also improve the
performance of the method. We will also state that an
extensive optimisation of the algorithm would be a
violation in our wish to compare the methods as ob-
jective as possible.

The possible nonlinearity of the data structure has
not been taken into account. It is possible to handle
this situation by the use of nonlinear modifications to
the modelling methods. It is also possible to achieve
a better performance in modelling by the use of non-
linear neural networks. This has been shown to be a
promising topic in sensory analysis and spectro-
scopic techniques. It is most likely to suggest that this
is the case in feature modelling.

7. Conclusion

We have shown that it is possible to extract fea-
tures from images of a porous structure and model
these to corresponding sensory attributes. All images
are modelled enabling the prediction of features on
unknown sample images. This process is uncompli-
cated and more easily implemented when compared
to traditional texture derivation and analysis meth-
ods. We have shown that it is possible to model sen-
sory attributes like porosity. Other attributes may be
modelled at the same time. Based on this we con-
clude that the AMT performs best in the modelling
of sensory porosity. The fact that the data topology
plays an important role in the choice of method, we
conclude that typical porous structures visually
judged is possible to model with all theses methods.

The ACOR and ACOV methods performed poorly
compared to the others, but as reported this method
has a good potential when it comes to other data

w xstructures 22 .
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