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Abstract

Lovelace and Cios recently proposed a “very simple spiking neuron

(VSSN) model” for simulations of large neuronal networks as an ef-

ficient replacement for the integrate-and-fire neuron model [Neural

Comput 20:65–90, 2008]. We argue that the VSSN model falls behind

key advances in neuronal network modeling over the past 20 years,

in particular techniques that permit simulators to compute the state

of the neuron without repeated summation over the history of input

spikes and to integrate the subthreshold dynamics exactly. State-of-

the-art solvers for networks of integrate-and-fire model neurons are

substantially more efficient than the VSSN simulator and allow for

routine simulations of networks of some 105 neurons and 109 connec-

tions on moderate computer clusters.

1 Introduction

The simulation of large-scale neuronal networks requires efficient algorithms.

To this end, Lovelace & Cios (2008) recently developed a “very simple spiking

neuron (VSSN) model” as an alternative to the widely used integrate-and-fire

neuron model. Lovelace & Cios claim that their model is mathematically sim-
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pler than the integrate-and-fire neuron, more accessible to visual inspection

and understanding, and significantly more efficient to simulate numerically.

We beg to differ.

Considering the mathematical simplicity of the models, the subthreshold

dynamics of the integrate-and-fire neuron with α-function current input is

described completely by three linear first-order time-invariant ordinary dif-

ferential equations (see below). The full power of mathematical analytical

techniques can thus be applied to networks built of integrate-and-fire neu-

rons. Burkitt (2006a; 2006b) recently summarized the state-of-the-art in

integrate-and-fire neuron modelling, and Brunel (2000) is an example for a

specific influential result. Without re-deriving such results or arriving at ex-

citing new ones, the claim of simplicity of the VSSN is hardly substantiated.

The VSSN is specified by a set of equations applying to different aspects

of neuronal dynamics, and yielding a description of neuronal dynamics by

piecewise linear functions. While these functions might look simple, they are

difficult to handle analytically, requiring many case distinctions.

Neuronal network simulations require solutions for three tasks: subthresh-

old integration of neuronal dynamics, determination of threshold crossings,

and spike exchange. In what follows, we first review the state-of-the-art in
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subthreshold integration and demonstrate that well-established techniques

are far simpler than the VSSN approach. We then compare the benefits of

push and pull methods for spike exchange. Finally, we present benchmark

results supporting our analysis. Methods for the determination of threshold

crossings, receive much attention in the literature at present and we do not

cover them here (Hansel et al., 1998; Shelley & Tao, 2001; Morrison et al.,

2007; Brette, 2007).

2 Integrating subthreshold dynamics

At first sight, the most difficult part of integrating the subthreshold dynam-

ics of point neurons is to handle all impinging synaptic currents. Lovelace &

Cios (2008) dismiss the leaky integrate-and-fire model because they consider

it necessary to sum explicitly over the entire input history of each neuron in

every time step to calculate the neuron state and to integrate the subthresh-

old dynamics with a very small time-step to achieve the desired accuracy.

Fortunately, this is not so: the α-function, commonly used to describe the

time course of synaptic input currents, is the solution to the critically damped

harmonic oscillator subject to a velocity kick. Since this is a second order
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linear time-invariant (LTI) dynamic system, the total current resulting from

the entire input history of a synapse is the solution of the differential equa-

tion for the superposition of all velocity kicks, that is, all input spikes. Thus,

the state variables automatically conserve the history of events and no book-

keeping of spike times, or repeated summation over past spikes, is required.

Furthermore, the equations of all synapses with identical time constants can

be lumped into a single set of equations. Individual synaptic events can still

have arbitrary amplitudes or “weights” because, unlike the time constant,

the weight only enters through the initial condition set by the kick. Wilson

& Bower (1989) and Bernard et al. (1994) are early accounts of this approach,

while Srinivasan & Chiel (1993) arrived at an exact solution with two state

variables without reference to differential equations.

Rotter & Diesmann (1999) showed that the equation for the synaptic

currents and the membrane potential of integrate-and-fire neurons can be

integrated exactly based on general properties of LTI systems; note that

Eq. (1.9) in Lovelace & Cios (2008) is identical to Eq. (3) in Rotter & Dies-

mann (1999). If synaptic events only occur on an equidistant time-grid, a

constant propagator matrix evolves the state of the system from one position
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on the grid to the next by multiplication with the state vector:





α1

α2

V




←





a 0 0

b a 0

c d e




×





α1

α2

V




.

Here, V is the membrane potential and α1 and α2 the two variables describ-

ing the synaptic current. The coefficients a, . . . , e are given by analytical

expressions, which only depend on the parameters of the system and the

computation step size (see Morrison et al., 2007, for the particular example

studied here). As the matrix is lower triangular, the state variables can be

updated “in place” in the sequence α1 → α2 → V ; no temporary variable

is required. The propagator matrix takes a particularly simple form (c = 0,

b = d = 1) in a suitable basis, allowing for very efficient hardware imple-

mentations of this updating scheme (Guerrero-Rivera et al., 2006). Rotter

& Diesmann (1999) also showed that a wide range of neuroscientifically rel-

evant input functions can be integrated exactly using this scheme, including

constant, piecewise linear and sinusoidally oscillating functions.
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3 Spike exchange

Besides the efficiency of the simulation of individual neurons, it is the rep-

resentation of connections and the exchange of spike events that determines

the efficiency of a network simulation. Lovelace & Cios (2008) correctly

state that a simulation scheme in which the synaptic state is stored with the

presynaptic neuron scales linearly with the number of synaptic connections

and is independent of spike rate. This does not guarantee, though, that a

scheme where the postsynaptic neuron requests the neuron state from the

presynaptic one is faster than the reverse scenario, where the presynaptic

neuron notifies all postsynaptic targets about spikes.

The postsynaptic neuron has to interrogate the presynaptic neuron in

each computation time step, leading to NK operations in each time step,

where N is the number of neurons and K the (average) number of connec-

tions per neuron. The presynaptic neuron, however, only needs to trans-

mit information upon the emission of a spike, leading to λhNK operations,

where λ is the average firing rate and h the computation time step. Thus, the

presynaptically triggered update is faster as long as λh < 1 corresponding

to λ = 1000 Hz at a resolution of h = 1 ms, well outside the physiological

regime.
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In very sparse networks, where the number of synapses is on the same

order of magnitude as the number of neurons, summing over all inputs may

be a plausible strategy. In most biologically realistic networks, though, the

number of connections exceeds the number of neurons by several orders of

magnitude, demanding activity-dependent algorithms to ensure efficiency.

We conclude that it is more efficient to have neurons page their postsynaptic

targets whenever the former fire a spike, than to have all neurons interrogate

their presynaptic neurons upon every time step; this is also the basis of event-

based simulation of neuronal networks (Delorme & Thorpe, 2003; Makino,

2003; Rochel & Martinez, 2003; Brette, 2006, 2007; Tonnelier et al., 2007).

4 Benchmarks

The notion of the efficiency of a simulation scheme is rather loosely defined

in the computational neuroscience literature. Morrison et al. (2007) argue

that efficiency should be defined as the simulation time required to achieve a

prescribed accuracy goal. A scheme which constrains spike times to a time-

grid is unsatisfactory in this respect if high accuracy is required, because the

integration error drops only linearly with decreasing computation time step
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(Hansel et al., 1998; Shelley & Tao, 2001).

Lovelace & Cios (2008) use their VSSN model to simulate a model of the

echolocation circuitry in bats. Their network contains 13,000 neurons and

38,000 synapses, i.e., fewer than three synapses per neuron, corresponding to

a connectivity of just 0.02%. This is an extremely low value: local connectiv-

ity in cortical tissue is typically estimated at about 10%, leaving each neuron

with some 1300 synapses and the network with some 17 million synapses in

total.

Lovelace & Cios report that simulating 4.2 milliseconds biological time

requires 40 seconds wall-clock time on a 1.6 GHz Pentium with a simulation

time step of h = 1µs. For comparison, we simulated a variant of the Brunel

network with 13,000 neurons and 39,000 synapses (Brunel, 2000) using the

NEST simulator (Gewaltig & Diesmann, 2007) on an IBM ThinkPad X60s

computer using one core of an Intel Centrino Duo processor at 1.6 GHz clock

speed. Using our implementation of the integrate-and-fire neuron providing

precise spike times independent of the resolution of the time grid (Morrison

et al., 2007, canonical model), we observed simulation times of 3.2 seconds

and 0.34 seconds, respectively, for resolutions h = 1 µs and h = 10 µs when

simulating 4.2 ms biological time. This is between one and two orders of
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magnitude faster than the simulations reported by Lovelace & Cios on com-

parable hardware.

5 Discussion

We believe that the problem of integrating the subthreshold dynamics of

the integrate-and-fire model has largely been solved. Currently, work in the

field focuses on more accurate and efficient methods to predict the time of

the next threshold crossing of model neurons (Brette, 2007; Morrison et al.,

2007). Another frontier is the development of simulators optimally exploiting

the power of modern multi-processor, multi-core hardware (Djurfeldt et al.,

2005; Migliore et al., 2006; Plesser et al., 2007). State-of-the-art simulators

have reached a performance where networks of 100, 000 neurons with real-

istic connectivity of 10%, i.e., 109 connections, can routinely be studied on

moderate computer clusters with no more than 100 CPU cores (Morrison

et al., 2007; Izhikevich & Edelman, 2008). Reaching this scale constitutes a

qualitative step, because it allows us to study neurons with all their synapses:

no scaling is required.

Choosing the right simulation strategy and software for a given research
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problem is a crucial, but difficult task. A recent, collaborative review of

existing simulators provides at least an overview over the functionality pro-

vided by various existing packages (Brette et al., 2007). A fair comparison

of the efficiency of simulators for a set of given tasks would require a similar

collaborative effort, as all simulator developers should be given a fair chance

to ensure that their simulators are used in the best manner.

It appears that the development of simulation technology for computa-

tional neuroscience is still at a level of organization where we keep reinvent-

ing the wheel. In our opinion, there are two main causes for this regrettable

situation: the lack of large-scale coordination in the field, in contrast to el-

ementary particle physics, for example, and the difficulty of publishing the

complex concepts and algorithms underlying advanced neuronal network sim-

ulations in an accessible format. Four recent reviews have partially addressed

these problems (Brette et al., 2007; Djurfeldt & Lansner, 2007; Cannon et al.,

2007; Djurfeldt et al., 2008) and one of us experiences successful coordina-

tion on a large scale within the EU FACETS project, while the International

Neuroinformatics Coordinating Facility (INCF) provides a world-wide forum

for coordinating our efforts in simulator development. We are confident that

these initiatives will help the computational neuroscience community to es-
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tablish shared standards within the coming years.
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