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Markov analysis of stochastic resonance in a periodically driven integrate-and-fire neuron
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We model the dynamics of the leaky integrate-and-fire neuron under periodic stimulation as a Markov
process with respect to the stimulus phase. This avoids the unrealistic assumption of a stimulus reset after each
spike made in earlier papers and thus solves the long-standing reset problem. The neuron exhibits stochastic
resonance, both with respect to input noise intensity and stimulus frequency. The latter resonance arises by
matching the stimulus frequency to the refractory time of the neuron. The Markov approach can be generalized
to other periodically driven stochastic processes containing a reset mechpi€i63-651X99)02306-3

PACS numbdss): 87.10+€, 05.40--a, 02.50.Ey, 02.50.Ga

I. INTRODUCTION neurons[18-20, and, as a spike generator, in studies on

) . ) . ) | , it has been shown
digm of stochastic resonance: the transduction of signals i, the integrate-and-fire neuron corresponds to a first-order

optimal in the presence of a particular amount of noise. Firsépproximation of the full Hodgkin-Huxley modg22,23.
suggested to explain the periodicity of ice afigk stochas- In between two spikes, the membrane potential of the
tic resonance has since been demonstrated in a wide rangeiﬁfegrate_and_ﬁre neuron is governed [12¢]

experiments and the underlying mechanisms are well under-
stood. A recent review of the field is given fig]. . . T0 (1) =—v () + (1) + (D). (1

The concept of stochastic resonance has met with particu-
lar attention in the neurosciencg3-9]. The brain achieves Here,r,, is the time constant of the membrane, which repre-
an enormous signal-processing performance in the presengents the internal time scale of the neuron (i is an, as
of noise from a wide range of sources, ranging from stochasyet, undefined noise process, comprising, e.g., stochastic
tic membrane channel openings on a molecular level, vimembrane potential fluctuations and irregular input to the
highly irregular firing patterns of individual neurons to dis- neuron from sources uncorrelated It@@). As the potential
tracting stimuli in perception. The improvement of signal reaches the threshold, a spike is recorded and the potential is
transduction by noise on all of these levels has now beereset tov(t)=v, instantaneously.
demonstrated experimentallff0—12 and may help to im- For Gaussian white noisgt) the evolution of the mem-
prove cochlear implants for the dedf3]. Recently, the first brane potentialv(t) from reset potential to threshold is
direct evidence for the behavioral relevance of stochastiequivalent to an Ornstein-Uhlenbeck process with df)
resonance has been reporféd], underlining the importance and an absorbing boundary=at ®. The output of the neu-
of stochastic resonance in neurobiology. ron is modeled as a sequence of delta pulggy= =, 5(t

To investigate the signal-processing properties of neu-t,) at the times of threshold crossingg}={t|v(t)=0}
rons, we ignore most of the biochemical details and sketclispike trair). The spike train is a stochastic point process,
neurons as threshold devices that receive an idigtlt,  specified entirely by the spike timés}.
which charges the membrane of the neuron like a leaky ca- This biologically most interesting stochastic process has
pacitor. When the potentiab(t) across the membrane so far escaped a rigorous analysis, in spite of several partially
reaches a thresholél, a spikeis fired: the membrane poten- successful attemp{25,26. For a list of open issues see Sec.
tial makes a brief but strong excursigduration~2 ms, VC4 of the review by Gammaitongt al. [2]. This is in
amplitude~100 mV). This spike is transmitted as output to marked contrast to the treatment of mathematically more ac-
other neurons. After the spike, the membrane potential igessible, but biologically less plausible models, such as
reset to a resting valug,, some 30 mV below the threshold bistable dynamic system27-3Q and threshold devices
[15]. As the shape of the spikes is stereotypical, informatiorwithout reset[31-33, in which stochastic resonance has
is only conveyed by the spike times. been well established.

This seemingly simplistic integrate-and-fire model of neu- The essential difficulty arises from the reset after each
ronal activity has successfully been used to explain the higlspike: there is no well-defined membrane potential distribu-
temporal precision achieved in the auditd6] and visual tion for asymptotic times, as used in the case of reset-free
system[17] in spite of comparatively long membrane time threshold detectors. Instead we have to analyze each inter-
constants. It has also been employed widely in the ongoingpike interval separately and then put these pieces together to
debate about the origin of spike-rate variability in cortical obtain the spike train as a whole. To facilitate this, past work

has assumed that the durations of all interspike intervals
(r=ty—tx_1) were identically and independently distrib-
*Electronic address: plesser@chaos.gwdg.de uted (i.i.d.), i.e., that the spike train is a stationary renewal
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process[34]. But in the presence of time-dependent input+ ¢) for t>t,. This suggests rewriting Eq2) in terms of
I(t), this would requiredentical inputwithin each interspike  the timet’ that has passed since the most recent spike at
interval (ISI). This is the much criticized reset assumption: phase. Thus, given this phase, the potential evolves from
Inasmuch as the input to the neuron reflects an externgl(t’=0|¢)=v,=0 until the next spike according to
stimulus presented, it would require the resetting of this ex-
ternal stimulus each time the neuron has fired a spike. V(@)= —0v(t'| )+ u+qcog Qt’ + @)+ VDEL').

In this paper we show how to analyze the response of the (3)
leaky integrate-and-fire neuron to periodic stimuli without
undue assumptions. The distribution of the length of indi-The next spike is fired after an interval as soon as the
vidual interspike intervals is computed numericd®], and  threshold condition is met,
spike trains are then assembled as Markov chains from these
intervals. We obtain probability distributions for the length r=inf{t'>0|v(t'|p)=1}. 4
of interspike intervals and the stimulus phases at which
spikes occur. These distributions should be directly compa¥he interspike intervals are connected by the iteration equa-
rable to experiments employing sustained stimulation withtions,
periodic signals. The signal processing performance of the
neuron is judged by the signal-to-noise ratBNR) of the dr=(Q 7+ P_1)mod2m,  t=ty_1+ 7, 5
output spike train. The SNR is maximal at an optimal noise
amplitude for fixed stimulus frequency and at a resonancéeading to the output spike train,
frequency for fixed noise amplitude. The latter resonance is a

consequence of a timescale matching between stimulus and F1) = i _ i i
membrane time constant. All computations are verified by (t)_j:() 5(t_tj)_j:0 g t_k:1 Tk |- (6)
simulations.

In Sec. Il, we show how to exploit the Markov property of  The reset of the membrane potentialig=0 after each
the integrate-and-fire neuron to determine its response tgpike completely erases the memory of the neuron. The sub-
sinusoidal input (t). The performance of the model neuron sequent behavior of the neuron therefore depends on its past
as a signal processing device is investigated in Sec. lll. Thgply through the absolute time of the spike i.e., the spike

We have thus split the task of solving the dynamics of the
Il. MARKOV ANALYSIS integrate-and-fire neuron into two parts. We will first solve

For an input current consisting of a constant offset, a sinuEhe .f'rSt passage-time problem posed by Egsand (4). for
. . . . .a given phasep of the last spike, before assembling the
soidal component and Gaussian white noise, the Langevif : . . o ;

. spike train from the interspike intervals according to E§s.
equation(l) reads

and(6).
b(t) = o Furqeos it do)+ \/Bf(t), @ A. Conditional ISI distribution

where time and potential have been scaled to their respective e first-passage-time problem for the membrane poten-
natur_al units7, and @;_ the reset potential is set =0. gl posed by Eqs(3) and(4) yields the distributiorp( 7| $)

The input is characterized by the dc offget stimulus am- ot the interspike interval lengthsfor a given stimulus phase
plitude g, frequency(), and initial phasep,. The noise has 4 at the beginning of the intervatonditional ISI distribu-
amplitude\D and autocorrelatiofé(t) £(t'))=8(t—t'). I tion). To the best of our knowledge, no analytic solution is
the remainder of this paper, we will investigate this model.known for this seemingly simple first-passage-time problem
For a derivation of the type of input current used here fromgf the Ornstein-Uhlenbeck process. The approximations sug-

more elementary models, sgg5]. gested in[25] are valid in a restricted parameter range

In the absence of noisd(=0), spikes will only be gen-  only—low stimulus frequencies in particular—and appear to

erated if yield qualitative rather than quantitative agreement with
simulations.

q We employ here a numerical method to compute the in-

U“:JEU(I)ZMJF ot b terspike interval distributions. The method is discussed in

detail in[26], and we only sketch it here. In the absence of
Therefore, we classify stimuli as subthresholdjf<1 and ~ an absorbing threshold the probabilB(w,t'|u,s’; ) that
as suprathreshold otherwise. In this paper, we will focus oh€ membrane potential is at timet’ if it was u at time
the biologically more interesting subthreshold regifgg]. S’ <t' is a Gaussian distribution. The mean is given by the
The methods presented here are applicable independent $#lution at timet’ of Eq. (3) for the noise-free casel(
the choice of stimulus parameters. We only require the pres= 0) with initial conditionv (s’|¢) = u, while the variance is
ence of noise, i.eD>0. o?(t")=(D/2)(1—e~2t'=5")). Then, the interspike-interval

Suppose that an initial spike has occured at tigpye0,  distribution is given by the integral equati¢87],

corresponding to stimulus phagg. The next spike follows
at time t;=inf{t>toJv(t)=1} and stimulus phaseg, ' _ J‘/ ,
=(Qt;+ ¢pp)mod2r, whence cdf)(t—t;)+ ¢p;]=cost P00 0 P [LDp(rl$)dr @)
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@ L ' ! ! ' ' ' j j ' ] B. Markov process in phase

Let us now turn to the problem of assembling spike trains
from interspike intervals according to Eq®) and(6). The
02} 1 length of an interval following a spike at timeand stimulus

’_§ I' ' phase ¢=[Qt+ ¢y]Jmod27 is distributed according to
g | ! p(7|$). Therefore, the probability that the next spike will
01t | " occur at phase) is given by
Iy * dr
AN (1 9)= | o9 3w-107+ gImodzm . (®)
T 2T
We will call 7(¢/| ¢) the transition probability of the spike
phase. We will now consider the Markov process of the
spike phase®, instead of the Markov process made up of
® | ' ' o ' ' ' ] the spike timeg,.
2 If we define the spike phase distributiod(¢) as the
€ probability (across an ensemble of neurons or repetitions of
202t an experimentthat thek™ spike in a train will be fired at
E stimulus phasep, then this probability will evolve according
? to
q o1}
= 2
< W= [T o ds. O
- I -, 1l:/l2 I b1 . . . . .
[Q T+ ¢] mod 21 As the neuron fires repetitively while driven by a stationary

periodic stimulus, the spike train emitted by the neuron will

FIG. 1. (a) Conditional ISI distributions f0r¢=—77/6 (SO|Id) approach a Stationary Markov process with phase distribu-
and ¢= /6 (dashedgt other parametera=0.95, =0.048, Q  {jon,

=0.05m, D=6X10"% T=40is the stimulus period. The refrac-

tory mode at smallr is present only for¢=— /6. The small o

modes around P correspond to the probability of skipping a pe- O ()= lim X(k)(l/f)zf T(¢| &)xO(p)de. (10)

riod. Note that, as in all other figures, quantities are in natural units. k—oe 0

(b) The same distributions as i@), but now plotted vs phase)

=[Q7+¢]mod2m, shifted to[ —,7]. The modes at~—w/25  The stationary phase distributiogi® () is the eigenfunction

coincide for the first and second stimulus period, while the refracyg eigenvalue 1 of the kernéi ¢ | ¢), and is guaranteed to

tory mode is clearly set apart. exist because this kernel is a conditional probability distribu-
tion [39]. Any initial phase distribution will converge to the

This equation is solved fgs using standard techniqufd8].  unique stationary solution provided th&ty | ¢)>0 every-

Source code is available on request. where[40]. That the latter condition holds in the presence of

As shown in Fig. 1, the conditional interspike-interval dis- Noise can be seen as follows. For §l_Jbthresh0Id stimuli, n.oise
tributionsp( 7| ) may depend strongly og. First, they con-  may drive the potential across the firing threshold at any time
tain a series of exponentially decaying peaks that are sepd=>0 in principle, yielding a possibly tiny, but nonzero prob-
rated by the stimulus periodi=2m/(). These peaks ability of spikes at any ph_ase. The same argument holds true
represent spikes that are well phase locked to the stimul or suprathreshold stimuli, Where hoise may keep pOter?“a'
and we will refer to them aperiodic peaksAn additional e!ow threshold up to any time. In the absence of noise,
peak appears at short intervaldor certain phaseg. This nelthefr C(_)I_nvergence _norl uniqueness arg_assu_red.h h
peak reflects the rise time of the membrane potential towardg. To facilitate numerica tregtmfant, we !scretlget € phase.
threshold. Its location is not related to the stimulus pefipd ince the condmonal '|ntersp|ke—|nterval distributigrsr| 4)
but reflects the intrinsic time scale of the neuron and define&'® S”.‘OOth n both time and_ ph_ase d_“‘? to the presence of
its refractory time, i.e., the minimum interval between two noise in th_e input, this o!|scret|zat|on W'" introduce or_1|y mi-
spikes. Thus, we will refer to this peak as thefractory nor numerlcal errors. It is largely equ]valent to applying nu-
peak It corresponds to two or more spikes fired in rapid me_ncal methods_to solve the kernel e|genvalu¢ proﬂm
succession within a single stimulus peri@dburs}. There is UsinglL F"”? of _W'dthAw (Ay=2m7/L) we obtain the spike
thus a qualitative dependence of the distributipnen the phase distribution vector,
phase¢ that can lead to interesting consequences for the (s 1Ay
firing behavior of the neuron. _ tr —

The relation between periodic and refractory peaks de- X=(Xouxa, X=X fjw x($)di,
pends on the stimulus parameters, particularly on the fre- (1
guency and the noise amplitude. We will discuss this rela-
tionship in Sec. Il C. and the phase transition matfixwith elements,
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FIG. 2. (a) Graphic representation of the Markov chain iteration % 0.01
given by Eq.(13). The dashed line is the matrix diagonal. Probabil- N y
ity is given by grayscale as indicated by the colorl§ay.Evolution . 0 . s s
. . L . . T 0 - —7/2 0 /2
of an initially uniform phase distribution under subsequent multi- v, v
plications withT, from right to left. See text for details. Stimulus
parametersy=0.95, q=0.05, 2 =0.027, andD=1.3x 10" *. FIG. 3. Phase transition matric&s[(a), (c), and(e)] and corre-

sponding stationary phase distributiogs’ [(b), (d), and (f)] for

(+1)Ay ) stimulus frequency)=0.057 at three different noise intensities
Tik= f T(y|kAy)dy, j,k=0,...L—-1. D=6.2x10"° [(a), and (b)], D=7.0x10"5 [(c) and (d)], and D
189 (12) =4.8x1072 [(e) and (f)]; other parametersu=0.95, ¢=0.05.

The grayscale is the same for all matrices, white indicating vanish-
ing probability. Error bars in the phase distributions indicate stan-
dard error of mean from simulated trains of 20 000 spikes. Observe
the different scalings of the ordinate.

The evolution equatior{9) simplifies from convolution to
matrix-vector multiplication,

YKED=T. 4, (13)
agonal. Within this range of phases, a spike will be followed
and the stationary distributiog® is the eigenvector to ei- py another spike at a slightly later phase, as shown in Fig.
genvalue 1 of the matriX. We have thus reduced the Mar- 2(b). Figuratively speaking, the neuron fires a burst of
kov process to a Markov chain. spikes, but there is always a chance that two subsequent
In practice, we obtain the transition matflxby numeri-  spikes will be one or more stimulus periods apart, even
cally evaluating Eqs(8) and(12) with p(7|¢) from EQ.(7).  though they are close in phase: in the Markov chain descrip-
The stationary distribution is then found using standard eitjon, all information about actual interval lengths is lost. The
genvector routines. For all data shown here, we used thinger results from the refractory peak of the ISI distribu-
discretizationL=72, A y= m/36=5°. In figures of transition tjons.
matrices and phase distributions the axis will run fremr Figure 3 shows the dependence of transition matrix and
to 7 as this renders structures more clearly. stationary phase distribution on the noise amplitude for slow
An example for the phase evolution of an initially uni- stimuli (T=10). For low noise, the transition matrix is domi-
form distribution towards the stationary state under the influnated by the horizontal bar, which intersects with the matrix
ence of a transition matriX is given in Fig. 2. To “read”  diagonal, indicating a stochastic fixed point. This results in a
the transition matrix, note that the matrix columns corre-sharply peaked spike phase distribution. At intermediate
spond to the phas¢, of the spike preceding the interval, the noise, the finger is more pronounced, while the bar barely
rows to the phase, ., of the spike terminating it. The phase touches the matrix diagonal, leading to a stochastic limit
axes run from— 7 to 7 from bottom to top in phase distri- cycle with two preferred phases: the neuron often fires bursts
bution vectorsy and the rows of the transition matrix and  of two successive spikes. At high noise, the finger stretches
from right to left across the columns of. Thus, the hori- all along the matrix diagonal, while the horizontal bar has
zontal bar in the transition matrix shown in Fig. 2 indicatesdisappeared altogether. The neuron fires rapidly, but largely
that for most values of, the next spike will occur around uncorrelated with the stimulus and the phase distribution is
¢« 1~— wl6. This bar corresponds to the periodic peaks ofvirtually flat.
the ISI distributions. For— m/4< ¢ < w/6, the matrix is This means that for very low noise the spike train of the
dominated by a “finger,” running parallel to the matrix di- neuron is nearly a stationary renewal process with interspike
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FIG. 4. Stationary phase distributiong® for stimulus fre- FIG. 5. Stationary ISI distributions for slow stimuli. Noise in-
quencszO.Sw and noise |ntensmesr?2:7.8>< 107* (solid), D tensities areD=6.2x10"° (solid), D=7.0x10"° (dasheli and
=4.8X10"" (dashedi and D=3.0x10"“ (dash-dottefl Every-  p—4 gx 102 (dash-dottel All other parameters are as in Fig. 3;
thing else is as in Fig. 3. error bars again indicate simulation results.

intervals i.i.d. according tp(r|¢*). Herey* is the location w
of the maximum of the stationary phase distribution, which (r)zf Tp(7)dT. (15
depends not only on the stimulus parameters, but also on the 0

noise amplitude. For high noise amplitudes, the response of, . . _ o o
P g b P (7) is the interspike-interval distribution that we expect to

the neuron is largely independent of the stimulus, and may‘‘/. . : R X
thus be described by a stationary renewal process as welilind in experiments with tonic stimulation. In contrast to a

the ISIs reduce to the refractory peak. But at intermediatStationary renewal process, this averaged ISI distribution

noise levels—those essential to the observation of stochastﬂ:oes‘nc_)t contaln_ a _fuII _descr|pt|on of Fhe SP |ke_ train.
Typical ISI distributionsp(7) are given in Figs. 5 and 6

resonance—the stationary phase distribution may be multi-

modal. Thus the correlations between the phases of subsfso—r the same parameters as ”S‘?d in Figs._3 gnd 4, respec-
Uvely. For low noise, they contain only periodic peaks, lo-

guent spikes have to be taken into account using the Marko g ol ) itiol f the stimul fiod
ansatz. Multimodal phase distributions as discussed here abgted precisely at integer multiples of the stimulus pefio

not just hypothetical: they have been observed in sensory
neurons of goldfish upon stimulation with sinusoidal water
waves[41].

0.4 T T T T T T T

For fast stimuli T<10), the stationary phase distribution 0.35
smears out much more along the phase axis, and does not
show multimodality, because the refractory time of the neu- 0.3
ron becomes comparable to the stimulus period and bursting
is no longer possible, see Fig. 4. At low to intermediate 0.25

noise, the distribution is too wide to be replaced by its mode
as in the renewal ansatz, but still sufficiently narrow to pro-
vide for a response that is well phase locked to the stimulus.
Therefore, the Markov approach is essential for high- 015
frequency stimuli as well.

02

p(D)

0.1
C. Stationary ISl distribution
Once the stationary phase distribution is known, the 0.05
interspike-interval distribution of the stationary firing pro-
cess is obtained by averaging the conditional ISI distribu- 0

tions over phase

p(7)= ijp(ﬂ ¢)X(S)(¢)d¢- (14) FIG. 6. Stationary ISI distributions for fast stimuli. Noise inten-
0 sities areD=7.8x10"* (solid), D=4.8x10 2 (dashed, and D
=3.0x 10" ? (dash-dotted All parameters are as in Fig. 4, and
The average interval length thus is error bars are from simulations.
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the neuron can only fire in a small time window within each  The situation is greatly simplified ifv is the stimulus
period, and several periods may be skipped in betweefrequency() or one of its harmonics. Expressing the spike
spikes. This indicates a firing pattern that is well phaseimes ast;=(m;+ ¢;/2m)T, Eq. (16) for o=nQ simplifies
locked to the stimulus. ISI distributions with comparableto

structure have been found in neurons of the auditory system et

in different specie$42,43. For high noise, the ISI distribu- , hEe in(0i— )

tions reduce to the refractory peak, i.e., a largely random STO(”Q): T, % e e, (17)
firing pattern. '

For intermediate noise, the ISl distributions dependwheren,mj are integersyj; e[ 0,27), andT=2x/Q is the
strongly on the stimulus frequency. For high frequeffelg.  stimulus period. In the observation peridg, on average
6), we find merely a superposition of periodic and refractoryT /() spikes will occur, regardless of the detailed structure
peaks: spikes preferentially occur at intervals that are mulof the spike train. We therefore fix the upper limit of the
tiples of the stimulus period, but this phase locking is weaksummation atN,=|T,/(7)], where(7) is the average inter-
This is very different for slow stimuliFig. 5, where the val length from Eq.(15) and|x] is the largest integer not

refractory peak is clearly separated from a wide peak at exceedingx. This yields as an approximation,
=T=40, the latter exposing some substructure. This can be

understood as follows. The maximum pef7) at 7=T cor- , 1 No in(gi— )
responds to two spikes fired each at the optimal phase in two St (N€2)~Sr ()= —< Tt .él et ).
subsequent periods. In contrast, if a period that contained a ° : (18

burst of two spikes is followed by another period containing

a burst, then typically the first spike will be slightly earlier  The task of computing an expectation with respect to all
than the optimal phase, the second one a bit later. Thus, thsossible spike trains is now reduced to that of averaging over
interval between the second spike of the first burst and thall possible sequences spike phasesTheir distribution and
first spike of the second burst is shorter than the stimulugorrelations are completely characterized by the transition
period, leading to the side peak at35. The bursts them- matrix T, permitting for evaluation of Eq(18) in closed
selves give rise to the refractory peak. This again indicategorm. The actual calculation is straightforward albeit lengthy
that the spike train is not a stationary renewal process.  algebra and is provided in the Appendix. The final result may

Along with results obtained using the Markov chain ap-be written as
proach, Figs. 3—6 display phase and ISl distributions ob-
tained from simulated trains of 20 000 spikes. The agreement 1
between Markov model and simulation is excellent. Source Sr,(n€}) = m[leA(n,No)ﬁ—(No—l)B(n)], (19)
code for the simulation based §44] is available on request.
where the functiong\(n,Ng) andB(n) are given in the Ap-
pendix. Note tha\(n,N,) is bounded adl,— «. For a Pois-
sonian spike train, botA andB are identically zero, yielding

To assess the performance of the integrate-and-fire neuranwhite power spectrurf84].
as a signal processing device, we evaluate the SNR of the At first, it might seem surprising that the spectrum con-
spike train generated in response to periodic input. In doindgains a term, ,—1)B(n), that scales linearly with the num-
so, one should keep in mind the purpose of the output spikber of spikes in the train. This is a consequence of the peri-
train. It has to convey information to other neurons in theodic component of the spike train introduced by the driving
brain within a certain time windowas the brain has to re- stimulus, leading to a mixed spectrum consisting of a con-
spond quickly to stimuli. Therefore, the relevant quantity istinuous background and a discrete spectrum of harmonics
the signal-to-noise ratio that can be achieved by measuringt6]. For infinite observation time, i.eN,—0, this gives
the spike train over a finite observation tirffig [45]. rise to the terms- §(w—n{}) in the power spectrum.

A typical power spectrum is shown in Fig. 7, indicating
close agreement of EL9) with results obtained by numeri-
cal Fourier transformation of simulated spike trains. The ap-

The one-sided power spectral density of a stationary spik@roximation made in fixing the summation limit in E(L8)
train f(t) [as defined in Eq(6)] over a time intervall, is s, therefore, well justified. The dip in the noise background

Ill. STOCHASTIC RESONANCE

A. Signal-to-noise ratio

[46] of the spectrum at low frequencies is a consequence of the
1 T 2 refractory period of the neuron, while the weak humpwat
S) (w)= < f °f(t)eiwtdt > ~1 indicates the presence of burfd§]. Spectra consisting
© mTo 0 only of this background have been found in neurons of

6 .5<To higher cortical areas of monkeys in the absence of periodic
_ 1 S gl (16) input [48].
7T, X ’ Since the power spectral density can only be evaluated in
closed form at multiples of the stimulus frequency, we ap-
The average is to be taken over the ensemble of all Spikgroximate the noise background as Poissonian white noise
trains, that is, over the set of all conditional ISI distributions Sp= (7(7)) ~* of a spike train of equal intensity45]. The

and their  —k)-fold convolutions. This problem appears in- Signal-to-noise ratioRy = obtainable from the spike train
tractable. within the observation timé&, is, therefore, given by
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N . Ui n g : . . quency Q, and three noise intensitie®=1.3x10"* (solid), D

cate results at stimulus harmonics from the Markov chain analysis, 14 _ 3
. L . . +7.8X10 “ (dashed and D=4.8x10 ° (dash-dottef] other pa-

while the drawn out line is obtained by fast Fourier transform from ametersu=0.95 —005

a simulated train of 20 000 spikes. Ticks on the abscissa mark muf’ =090, =L

tiples of the stimulus perio€) = 0.05. ) ) ) . ) .

attains its maximum for an intermediate noise level. The

striking feature is that the overall maximum in the SNR is
EJ—l)B(l) reached at an intermediate frequer@y~ =/3, which we
(1) ' thus call theresonance frequencyrhe same qualitative de-
(20 pendence of the SNR on noise amplitude and stimulus fre-
guencies is observed over a wide range of stimulus param-
The signal-to-noise ratio for three different stimulus fre-eters, including weakly suprathreshold cases £Qu& 1,
guencies is shown in Fig. 8 vs the noise amplitude, again i0.4<q/(1— x)=<1.2; data not shown
excellent agreement with simulation results. Stochastic reso- Note that the stochastic resonance reported in an earlier
nance(SR) is clearly present at all frequencies, as the SNRpaper[26] is an artifact of the renewal ansatz employed in
that paper. There, the stimulus phase is reset to an arbitrarily
chosen valuegp, after each spike, and the signal-to-noise
ratio is computed for an infinite observation time. The SNR
is maximized for that noise level at which the periodic peaks
of the ISI distributionp( 7| ¢o) are centered about the mul-
tiples of the stimulus period. But if, for low noise, one uses
for each noise leveD a different¢y(D), namely, the mode
of the stationary phase distribution as discussed in Sec. Il B,
the periodic peaks are at multiples Dfor all noise intensi-
ties, whence the SNR does not drop off 00 and no
resonance occur@lata not shown This observation under-
lines the importance of the Markov approach.

. Sr () LA
= =1+
T, S5

+

L | B

B. Time scale matching

In contrast to stochastic resonance in dynamical systems,
SR with respect to the noise amplitude is not induced by the
matching of time scales in threshold systems, but results

. . . . . . from stochastic linearization of the response function of the
0 0.05 01 0'15\/ 02 025 03 035 neuron[45,49. In contrast, the additional resonance along
D the frequency axis arises in the integrate-and-fire neuron as a

FIG. 8. Signal-to-noise rati®; vs noise amplitude/D for consequence of matching the stimulus period to the intrinsic
three different stimulus frequetﬁciesﬂzo_lﬂ- (dashed, Q time scale of the neuron in an appropriate manner. This is
=0.33r (solid) and Q2 =0.5r (dash-dottell Other parameters are demonstrated in Fig. 9. For a stimulus at the resonance fre-
1=0.95,q=0.05, andT,= 200. Error bars show standard error of quency(},, the peak at=T in the stationary ISI distribu-
mean from simulated trains of 20 000 spikes. tion can “grow” in place as noise is increased, without be-
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of a Markov process. This avoids the unrealistic assumption
of a stimulus reset after each spike, the most serious short-
coming of previous work25,26|, and this answers questions
(1) raised by Gammaitoret al.in Sec. V 4 C of their review

[2]. Their second question concerns the fact that the neural
membrane is a rectifier: even a strong negative input current
will not lower the membrane potential more than a few mil-

= livolts below the reset potentialy. This would indeed be a
= problem if the dc offsefu of the input were much smaller
m% than the amplitudg of the ac stimulus. Preliminary evidence

suggests that the best fit of interspike-interval distributions
generated by the model with experimental data from the cat’s
auditory system[43] is obtained for subthreshold stimuli
with u>q. In this regime, the membrane potential is quickly
raised tovy+ u and then oscillates around this level, unaf-
fected by rectification. Finally, Gammaitoei al. question
the validity of the approximations used to compute the ISI
-3 ! ' y ' ! ' distributions in[25]. This matter is avoided here by numeri-
0 005 01 015 02 025 03 035 : S I
D cally computing these distributions. A study of the validity
of approximate closed-form ISI distributions will be given
FIG. 10. Signal-to-noise ratiBgne, from the phenomenological elsewherd51].
model of Eq.(21). All parameters are as in Fig. 8, with stimulus ~ The Markov formalism presented in this paper is appli-
frequencies(=0.1m (dashed (1=0.337 (solid) and 2=0.57  cable to any periodically driven stochastic process with a
(dash-dottef reset. The only required ingredients are the conditional first-

ing disturbed by the refractory peak. Indeed, the latter arise255298-time distributiong 7| ¢) and the iteration equations

at the location of the first periodic peak and shifts away from. )- The generahzatlon _to more Cor_nplex stimuli, e.g., includ
—T only for verv large noise. In this wav. the firing rate of "9 amplitude modulation, is straightforward. We recently
T y ylarg - Y, 9 became aware of a similar approach to hopping in bistable
the neuron can be increased without loosing the phase lock- .
) ; . ) potentials[52,53.
ing to the stimulus. Compare this to the cases of lo(ig. . .
; ) C ks With the Markov machinery at hand, we have demon-
5) and higher(Fig. 6) frequencies: in both cases, high firing ; ; X
. L ) . strated that the signal-to-noise ratio of the output of the neu-
rates can only be achieved by raising the noise amplitude tg_ " - . . . '
i : ron is maximized at an optimal noise amplitude for fixed
a point where the refractory peak has either replaced (

S . frequency and at a resonance frequency for fixed noise in-
.<Q’). or smeared out@@ >(,) the periodic peaks, resulting tensity. That is, the noise induce$ana fideresonance with
in a firing pattern poorly phase locked to the stimulus.

This competition of brecision and intensity is demon- respect to the stimulus frequency, as it has been described in
P prec y bistable systems before in terms of residence-time
strated by a phenomenological ansatz for the SNR. A mea-

sure of phase locking between stimulus and response is trklntersmke-mterval distributions [54]. This work has re-

~ %ntly been criticizedi53] on the ds that it Id find
/i ; y grounds that it would fin
\[/Seé:]toE:siringtg\.CS ¢ (€' |f’ V\éherglp_%rg tdhe ?plke plhaies stochastic resonance even in a Poissonian spike train with
ing llf tsr;a n:enurgr? ;ftepr:\a;tictoalr;e:suremtr:(ceadiz:e% gfcp-ha exponential ISlp(7) and flat spike phase distributigf( ¢).
locking from a train ofN=T,/(7) spikes, the quality of is criticism does not apply to our study, however, as we

ill be- yN. Th hat the sianal would have a SNR oR=1 for a Poisson process indepen-
measurement will be- yN. Thus, we expect that the signal- yany of nojse amplitude and stimulus frequency. We are thus
to-noise ratioRpe, Will roughly be given by

confident that the results reported here are not an artifact.
T A twofold resonance as demonstrated in this paper for a
Roper~ Csy/N=C¢ [—° (21 nondynamical threshold system has been predicted for a pe-
phen s S < > .. K K . k
T riodically modulated, piecewise constant bistable potential
r{(‘935]. This indicates that, as for “classic” stochastic reso-
nance, the effects are universal and do not depend on details

Figure 10 demonstrates that this simple model describes t
behavior of the SNR well. In particular, the two-fold stochas- X i
of the signal-processing system.

tic resonance is reproduced. Neurons in the auditory system can phase lock to acoustic
In short, to elicit a strong output signal from the model . "~ ° = aitory Syst AN p .
stimuli with high acuity and utilize this for the precise local-

neuron, a sufficient input noise level is required. But this;

comes at a cost, as the quality of the output, i.e., the precf—z""t'on of sound sourcef6]. Our results show that strong

sion of the phase locking, deteriorates as noise is added. Tﬁégnals th_at are well phasg Iock_ed_to a_stlmulus may be
chieved in spite of the noise ubiquitous in the neural sys-

maximum SNR represents the optimal compromise betwee em. Stochastic resonance might, therefore, be one of the

signal strength and quality. underlying mechanisms of stereo hearing. First qualitative
comparisons indicate good agreement between response
properties of the integrate-and-fire neuron and of auditory
In this paper, we have shown that the periodically drivenneurons. An intriguing question in this respect is the rel-
integrate-and-fire neuron can be analyzed in the frameworkvance of thdona fideSR to the neural system. It may serve

IV. DISCUSSION
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M-1

1 .
M2 (M—;)Tl}bm).

to tune neurons as bandpass filters of a special kind: only A
stimuli in a certain frequency window will be transmitted hy(nQ)=a"(n)
with high intensityand precise phase locking. A detailed
study will be the topic of a future publication.

DiagonalizingT leads to
ACKNOWLEDGMENTS hy(nQ)=a(n)-SM.p(n). (A4)
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m m m
APPENDIX: COMPUTING THE POWER SPECTRAL T-An M (\M_1)? for - m>1,
DENSITY m
To derive Eq.(19), i.e., with
1 M T=C-L-C™1, L=diag1>\y|=...=|\|),
STo(nQ):M—<.E em('//jl/’k)> i )
TM(7) \ [ a(n)=C"a(n), b(n)=C H(n).
1 . .
= T[lJFA(n'MH(M ~1)B(n)], Inserting Eq.(A4) into Eq. (Al), we have
T\T
1
we split the double sum into the diagonal and off-diagonal Sr.(nQ)= m{lJrZ Rda'(n)S™b(n)]}. (AB)
terms,

1 Finally, we split the matrixS™) into the parts pertaining
STO(nQ)= ——[1+hy(nQ)+h{(nQ)], (A1) to the discrete and the continuous parts of the spectrum and

m(7) define the function# andB,
1 M M-k M—1
hM(nQ)zmel J_Zl (€W =y, (A2) s<M>=diag< 5—0,....0 +diag 0,58, ... ,sM),
the asterisk denoting complex conjugation aie-|T,/7]. A(n,M)=2 Rda"(n)diag 0.s%, ... sM)b(n)],
Since we are considering a stationary Markov process, all
i are identically distributed according ¥®, while corre- B(n)=Rda,(n)by(n)].
lations between, and i, ; are given by thg " power of
the transition matrixT yielding Rewriting Eq.(A6) accordingly, we arrive at the desired ex-
. . . pression for the power spectral density,
(et =¥y =a(n)"- TI-b(n), (A3)
1
with vectors STO(nQ)=m[1+A(n,M)+(M—1)B(n)].
é"(n)z(l,ei"A‘/’,eZi”A'*”, L ,e(Lfl)inAw),

To see thatA is bounded a$! —, note thatA depends
~ i1y on M only through the diagonal entries &™) with m>1
t =149 (L=D)inAy (S)r (| —
b(n)={x*(0), ... e "XTIL DAY and|\,|<1. For these we have
Am

the expression foh,, depends only o but not onk so that lim |s§nMn)1| =1
“Am

we may perform the outer summation to obtain M —o0

Upon inserting Eq(A3) into Eqg. (A2), we observe that
‘ <o, m>1.
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