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Markov analysis of stochastic resonance in a periodically driven integrate-and-fire neuron

Hans E. Plesser* and Theo Geisel
Max-Planck-Institut fu¨r Strömungsforschung and Fakulta¨t für Physik, Universita¨t Göttingen, Bunsenstraße 10,

37073 Go¨ttingen, Germany
~Received 13 October 1998; revised manuscript received 23 December 1998!

We model the dynamics of the leaky integrate-and-fire neuron under periodic stimulation as a Markov
process with respect to the stimulus phase. This avoids the unrealistic assumption of a stimulus reset after each
spike made in earlier papers and thus solves the long-standing reset problem. The neuron exhibits stochastic
resonance, both with respect to input noise intensity and stimulus frequency. The latter resonance arises by
matching the stimulus frequency to the refractory time of the neuron. The Markov approach can be generalized
to other periodically driven stochastic processes containing a reset mechanism.@S1063-651X~99!02306-5#

PACS number~s!: 87.10.1e, 05.40.2a, 02.50.Ey, 02.50.Ga
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I. INTRODUCTION

Periodically modulated stochastic processes have b
studied intensely over the last two decades under the p
digm of stochastic resonance: the transduction of signa
optimal in the presence of a particular amount of noise. F
suggested to explain the periodicity of ice ages@1#, stochas-
tic resonance has since been demonstrated in a wide ran
experiments and the underlying mechanisms are well un
stood. A recent review of the field is given in@2#.

The concept of stochastic resonance has met with par
lar attention in the neurosciences@3–9#. The brain achieves
an enormous signal-processing performance in the pres
of noise from a wide range of sources, ranging from stoch
tic membrane channel openings on a molecular level,
highly irregular firing patterns of individual neurons to di
tracting stimuli in perception. The improvement of sign
transduction by noise on all of these levels has now b
demonstrated experimentally@10–12# and may help to im-
prove cochlear implants for the deaf@13#. Recently, the first
direct evidence for the behavioral relevance of stocha
resonance has been reported@14#, underlining the importance
of stochastic resonance in neurobiology.

To investigate the signal-processing properties of n
rons, we ignore most of the biochemical details and ske
neurons as threshold devices that receive an inputI (t),
which charges the membrane of the neuron like a leaky
pacitor. When the potentialv(t) across the membran
reaches a thresholdQ, a spikeis fired: the membrane poten
tial makes a brief but strong excursion~duration '2 ms,
amplitude'100 mV). This spike is transmitted as output
other neurons. After the spike, the membrane potentia
reset to a resting valuev0, some 30 mV below the threshol
@15#. As the shape of the spikes is stereotypical, informat
is only conveyed by the spike times.

This seemingly simplistic integrate-and-fire model of ne
ronal activity has successfully been used to explain the h
temporal precision achieved in the auditory@16# and visual
system@17# in spite of comparatively long membrane tim
constants. It has also been employed widely in the ongo
debate about the origin of spike-rate variability in cortic
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neurons@18–20#, and, as a spike generator, in studies
synaptic gain control@21#. This arguably makes it the mos
widespread model in studies on neuronal information p
cessing. From a mathematical viewpoint, it has been sho
that the integrate-and-fire neuron corresponds to a first-o
approximation of the full Hodgkin-Huxley model@22,23#.

In between two spikes, the membrane potential of
integrate-and-fire neuron is governed by@24#

tmv̇~ t !52v~ t !1I ~ t !1z~ t !. ~1!

Here,tm is the time constant of the membrane, which rep
sents the internal time scale of the neuron andz(t) is an, as
yet, undefined noise process, comprising, e.g., stocha
membrane potential fluctuations and irregular input to
neuron from sources uncorrelated toI (t). As the potential
reaches the threshold, a spike is recorded and the potent
reset tov(t)5v0 instantaneously.

For Gaussian white noisez(t) the evolution of the mem-
brane potentialv(t) from reset potential to threshold i
equivalent to an Ornstein-Uhlenbeck process with driftI (t)
and an absorbing boundary atv5Q. The output of the neu-
ron is modeled as a sequence of delta pulsesf (t)5(kd(t
2tk) at the times of threshold crossings$tk%5$tuv(t)5Q%
~spike train!. The spike train is a stochastic point proce
specified entirely by the spike times$tk%.

This biologically most interesting stochastic process h
so far escaped a rigorous analysis, in spite of several part
successful attempts@25,26#. For a list of open issues see Se
V C 4 of the review by Gammaitoniet al. @2#. This is in
marked contrast to the treatment of mathematically more
cessible, but biologically less plausible models, such
bistable dynamic systems@27–30# and threshold devices
without reset@31–33#, in which stochastic resonance ha
been well established.

The essential difficulty arises from the reset after ea
spike: there is no well-defined membrane potential distri
tion for asymptotic times, as used in the case of reset-
threshold detectors. Instead we have to analyze each in
spike interval separately and then put these pieces togeth
obtain the spike train as a whole. To facilitate this, past w
has assumed that the durations of all interspike interv
(tk5tk2tk21) were identically and independently distrib
uted ~i.i.d.!, i.e., that the spike train is a stationary renew
7008 ©1999 The American Physical Society
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process@34#. But in the presence of time-dependent inp
I (t), this would requireidentical inputwithin each interspike
interval ~ISI!. This is the much criticized reset assumptio
Inasmuch as the input to the neuron reflects an exte
stimulus presented, it would require the resetting of this
ternal stimulus each time the neuron has fired a spike.

In this paper we show how to analyze the response of
leaky integrate-and-fire neuron to periodic stimuli witho
undue assumptions. The distribution of the length of in
vidual interspike intervals is computed numerically@26#, and
spike trains are then assembled as Markov chains from t
intervals. We obtain probability distributions for the leng
of interspike intervals and the stimulus phases at wh
spikes occur. These distributions should be directly com
rable to experiments employing sustained stimulation w
periodic signals. The signal processing performance of
neuron is judged by the signal-to-noise ratio~SNR! of the
output spike train. The SNR is maximal at an optimal no
amplitude for fixed stimulus frequency and at a resona
frequency for fixed noise amplitude. The latter resonance
consequence of a timescale matching between stimulus
membrane time constant. All computations are verified
simulations.

In Sec. II, we show how to exploit the Markov property
the integrate-and-fire neuron to determine its response
sinusoidal inputI (t). The performance of the model neuro
as a signal processing device is investigated in Sec. III.
results are discussed in Sec. IV.

II. MARKOV ANALYSIS

For an input current consisting of a constant offset, a si
soidal component and Gaussian white noise, the Lang
equation~1! reads

v̇~ t !52v~ t !1m1q cos~Vt1f0!1ADj~ t !, ~2!

where time and potential have been scaled to their respe
natural unitstm and Q; the reset potential is set tov050.
The input is characterized by the dc offsetm, stimulus am-
plitude q, frequencyV, and initial phasef0. The noise has
amplitudeAD and autocorrelation̂j(t)j(t8)&5d(t2t8). In
the remainder of this paper, we will investigate this mod
For a derivation of the type of input current used here fr
more elementary models, see@35#.

In the absence of noise (D50), spikes will only be gen-
erated if

v`5 lim
t→`

v~ t !5m1
q

A11V2
.1.

Therefore, we classify stimuli as subthreshold ifv`<1 and
as suprathreshold otherwise. In this paper, we will focus
the biologically more interesting subthreshold regime@36#.
The methods presented here are applicable independe
the choice of stimulus parameters. We only require the p
ence of noise, i.e.,D.0.

Suppose that an initial spike has occured at timet050,
corresponding to stimulus phasef0. The next spike follows
at time t15 inf$t.t0uv(t)>1% and stimulus phasef1
5(Vt11f0)mod2p, whence cos@V(t2t1)1f1#5cos(Vt
t
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1f0) for t.t1. This suggests rewriting Eq.~2! in terms of
the time t8 that has passed since the most recent spike
phasef. Thus, given this phase, the potential evolves fro
v(t850uf)5v050 until the next spike according to

v̇~ t8uf!52v~ t8uf!1m1q cos~Vt81f!1ADj~ t8!.
~3!

The next spike is fired after an intervalt, as soon as the
threshold condition is met,

t5 inf$t8.0uv~ t8uf!>1%. ~4!

The interspike intervals are connected by the iteration eq
tions,

fk5~Vtk1fk21!mod2p, tk5tk211tk , ~5!

leading to the output spike train,

f ~ t !5(
j 50

`

d~ t2t j !5(
j 50

`

dS t2 (
k51

j

tkD . ~6!

The reset of the membrane potential tov050 after each
spike completely erases the memory of the neuron. The s
sequent behavior of the neuron therefore depends on its
only through the absolute time of the spiketk , i.e., the spike
train is a Markov process.

We have thus split the task of solving the dynamics of
integrate-and-fire neuron into two parts. We will first sol
the first-passage-time problem posed by Eqs.~3! and~4! for
a given phasef of the last spike, before assembling th
spike train from the interspike intervals according to Eqs.~5!
and ~6!.

A. Conditional ISI distribution

The first-passage-time problem for the membrane po
tial posed by Eqs.~3! and ~4! yields the distributionr(tuf)
of the interspike interval lengthst for a given stimulus phase
f at the beginning of the interval~conditional ISI distribu-
tion!. To the best of our knowledge, no analytic solution
known for this seemingly simple first-passage-time probl
of the Ornstein-Uhlenbeck process. The approximations s
gested in @25# are valid in a restricted parameter ran
only—low stimulus frequencies in particular—and appear
yield qualitative rather than quantitative agreement w
simulations.

We employ here a numerical method to compute the
terspike interval distributions. The method is discussed
detail in @26#, and we only sketch it here. In the absence
an absorbing threshold the probabilityP(w,t8uu,s8;f) that
the membrane potential isw at time t8 if it was u at time
s8,t8 is a Gaussian distribution. The mean is given by t
solution at timet8 of Eq. ~3! for the noise-free case (D
50) with initial conditionv(s8uf)5u, while the variance is
s2(t8)5(D/2)(12e22(t82s8)). Then, the interspike-interva
distribution is given by the integral equation@37#,

P~1,t8u0,0!5E
0

t8P~1,t8u1,t!r~tuf!dt. ~7!
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7010 PRE 59HANS E. PLESSER AND THEO GEISEL
This equation is solved forr using standard techniques@38#.
Source code is available on request.

As shown in Fig. 1, the conditional interspike-interval d
tributionsr(tuf) may depend strongly onf. First, they con-
tain a series of exponentially decaying peaks that are s
rated by the stimulus periodT52p/V. These peaks
represent spikes that are well phase locked to the stim
and we will refer to them asperiodic peaks. An additional
peak appears at short intervalst for certain phasesf. This
peak reflects the rise time of the membrane potential towa
threshold. Its location is not related to the stimulus periodT,
but reflects the intrinsic time scale of the neuron and defi
its refractory time, i.e., the minimum interval between tw
spikes. Thus, we will refer to this peak as therefractory
peak. It corresponds to two or more spikes fired in rap
succession within a single stimulus period~a burst!. There is
thus a qualitative dependence of the distributionsr on the
phasef that can lead to interesting consequences for
firing behavior of the neuron.

The relation between periodic and refractory peaks
pends on the stimulus parameters, particularly on the
quency and the noise amplitude. We will discuss this re
tionship in Sec. II C.

FIG. 1. ~a! Conditional ISI distributions forf52p/6 ~solid!
andf5p/6 ~dashed!; other parametersm50.95, q50.048, V
50.05p, D5631025. T540 is the stimulus period. The refrac
tory mode at smallt is present only forf52p/6. The small
modes around 2T correspond to the probability of skipping a p
riod. Note that, as in all other figures, quantities are in natural un
~b! The same distributions as in~a!, but now plotted vs phase,c
5@Vt1f#mod2p, shifted to @2p,p#. The modes at'2p/25
coincide for the first and second stimulus period, while the refr
tory mode is clearly set apart.
a-

us
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B. Markov process in phase

Let us now turn to the problem of assembling spike tra
from interspike intervals according to Eqs.~5! and ~6!. The
length of an interval following a spike at timet and stimulus
phase f5@Vt1f0#mod2p is distributed according to
r(tuf). Therefore, the probability that the next spike w
occur at phasec is given by

T ~c u f!5E
0

`

r~tuf!d~c2@Vt1f#mod2p!
dt

V
. ~8!

We will call T(c u f) the transition probability of the spike
phase. We will now consider the Markov process of t
spike phasesfk instead of the Markov process made up
the spike timestk .

If we define the spike phase distributionx (k)(f) as the
probability ~across an ensemble of neurons or repetitions
an experiment! that thekth spike in a train will be fired at
stimulus phasef, then this probability will evolve according
to

x (k11)~c!5E
0

2p

T ~c u f!x (k)~f!df. ~9!

As the neuron fires repetitively while driven by a stationa
periodic stimulus, the spike train emitted by the neuron w
approach a stationary Markov process with phase distr
tion,

x (s)~c!5 lim
k→`

x (k)~c!5E
0

2p

T ~c u f!x (s)~c!df. ~10!

The stationary phase distributionx (s)(c) is the eigenfunction
to eigenvalue 1 of the kernelT(c u f), and is guaranteed to
exist because this kernel is a conditional probability distrib
tion @39#. Any initial phase distribution will converge to th
unique stationary solution provided thatT(c u f).0 every-
where@40#. That the latter condition holds in the presence
noise can be seen as follows. For subthreshold stimuli, n
may drive the potential across the firing threshold at any ti
t.0 in principle, yielding a possibly tiny, but nonzero pro
ability of spikes at any phase. The same argument holds
for suprathreshold stimuli, where noise may keep poten
below threshold up to any time. In the absence of no
neither convergence nor uniqueness are assured.

To facilitate numerical treatment, we discretize the pha
Since the conditional interspike-interval distributionsr(tuf)
are smooth in both time and phase due to the presenc
noise in the input, this discretization will introduce only m
nor numerical errors. It is largely equivalent to applying n
merical methods to solve the kernel eigenvalue problem@39#.
UsingL bins of widthDc (Dc52p/L) we obtain the spike
phase distribution vector,

x5~x0 ,x1 , . . . ,xL21! tr, x j5E
j Dc

( j 11)Dc

x~c!dc,

~11!

and the phase transition matrixT with elements,

s.

-
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T jk5E
j Dc

( j 11)Dc

T ~c u kDc!dc, j ,k50, . . . ,L21.

~12!

The evolution equation~9! simplifies from convolution to
matrix-vector multiplication,

x(k11)5T•x(k), ~13!

and the stationary distributionx(s) is the eigenvector to ei
genvalue 1 of the matrixT. We have thus reduced the Ma
kov process to a Markov chain.

In practice, we obtain the transition matrixT by numeri-
cally evaluating Eqs.~8! and~12! with r(tuf) from Eq. ~7!.
The stationary distribution is then found using standard
genvector routines. For all data shown here, we used
discretizationL572, Dc5p/3655°. In figures of transition
matrices and phase distributions the axis will run from2p
to p as this renders structures more clearly.

An example for the phase evolution of an initially un
form distribution towards the stationary state under the in
ence of a transition matrixT is given in Fig. 2. To ‘‘read’’
the transition matrix, note that the matrix columns cor
spond to the phasefk of the spike preceding the interval, th
rows to the phasefk11 of the spike terminating it. The phas
axes run from2p to p from bottom to top in phase distri
bution vectorsx and the rows of the transition matrixT, and
from right to left across the columns ofT. Thus, the hori-
zontal bar in the transition matrix shown in Fig. 2 indicat
that for most values offk the next spike will occur around
fk11'2p/6. This bar corresponds to the periodic peaks
the ISI distributions. For2p/4&fk&p/6, the matrix is
dominated by a ‘‘finger,’’ running parallel to the matrix d

FIG. 2. ~a! Graphic representation of the Markov chain iterati
given by Eq.~13!. The dashed line is the matrix diagonal. Probab
ity is given by grayscale as indicated by the colorbar.~b! Evolution
of an initially uniform phase distribution under subsequent mu
plications withT, from right to left. See text for details. Stimulu
parameters:m50.95, q50.05, V50.02p, andD51.331024.
i-
e

-

-

f

agonal. Within this range of phases, a spike will be follow
by another spike at a slightly later phase, as shown in F
2~b!. Figuratively speaking, the neuron fires a burst
spikes, but there is always a chance that two subseq
spikes will be one or more stimulus periods apart, ev
though they are close in phase: in the Markov chain desc
tion, all information about actual interval lengths is lost. T
finger results from the refractory peak of the ISI distrib
tions.

Figure 3 shows the dependence of transition matrix a
stationary phase distribution on the noise amplitude for s
stimuli (T*10). For low noise, the transition matrix is dom
nated by the horizontal bar, which intersects with the ma
diagonal, indicating a stochastic fixed point. This results i
sharply peaked spike phase distribution. At intermedi
noise, the finger is more pronounced, while the bar bar
touches the matrix diagonal, leading to a stochastic li
cycle with two preferred phases: the neuron often fires bu
of two successive spikes. At high noise, the finger stretc
all along the matrix diagonal, while the horizontal bar h
disappeared altogether. The neuron fires rapidly, but larg
uncorrelated with the stimulus and the phase distribution
virtually flat.

This means that for very low noise the spike train of t
neuron is nearly a stationary renewal process with intersp

-

FIG. 3. Phase transition matricesT @~a!, ~c!, and~e!# and corre-
sponding stationary phase distributionsx(s) @~b!, ~d!, and ~f!# for
stimulus frequencyV50.05p at three different noise intensitie
D56.231026 @~a!, and ~b!#, D57.031025 @~c! and ~d!#, and D
54.831023 @~e! and ~f!#; other parameters:m50.95, q50.05.
The grayscale is the same for all matrices, white indicating van
ing probability. Error bars in the phase distributions indicate st
dard error of mean from simulated trains of 20 000 spikes. Obse
the different scalings of the ordinate.
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7012 PRE 59HANS E. PLESSER AND THEO GEISEL
intervals i.i.d. according tor(tuc* ). Herec* is the location
of the maximum of the stationary phase distribution, wh
depends not only on the stimulus parameters, but also on
noise amplitude. For high noise amplitudes, the respons
the neuron is largely independent of the stimulus, and m
thus be described by a stationary renewal process as w
the ISIs reduce to the refractory peak. But at intermed
noise levels—those essential to the observation of stoch
resonance—the stationary phase distribution may be m
modal. Thus the correlations between the phases of su
quent spikes have to be taken into account using the Mar
ansatz. Multimodal phase distributions as discussed here
not just hypothetical: they have been observed in sens
neurons of goldfish upon stimulation with sinusoidal wa
waves@41#.

For fast stimuli (T&10), the stationary phase distributio
smears out much more along the phase axis, and does
show multimodality, because the refractory time of the n
ron becomes comparable to the stimulus period and burs
is no longer possible, see Fig. 4. At low to intermedia
noise, the distribution is too wide to be replaced by its mo
as in the renewal ansatz, but still sufficiently narrow to p
vide for a response that is well phase locked to the stimu
Therefore, the Markov approach is essential for hig
frequency stimuli as well.

C. Stationary ISI distribution

Once the stationary phase distribution is known,
interspike-interval distribution of the stationary firing pr
cess is obtained by averaging the conditional ISI distri
tions over phase

r~t!5E
0

2p

r~tuc!x (s)~c!dc. ~14!

The average interval length thus is

FIG. 4. Stationary phase distributionsx(s) for stimulus fre-
quency V50.5p and noise intensitiesD57.831024 ~solid!, D
54.831023 ~dashed!, and D53.031022 ~dash-dotted!. Every-
thing else is as in Fig. 3.
he
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^t&5E
0

`

tr~t!dt. ~15!

r(t) is the interspike-interval distribution that we expect
find in experiments with tonic stimulation. In contrast to
stationary renewal process, this averaged ISI distribut
doesnot contain a full description of the spike train.

Typical ISI distributionsr(t) are given in Figs. 5 and 6
for the same parameters as used in Figs. 3 and 4, res
tively. For low noise, they contain only periodic peaks, l
cated precisely at integer multiples of the stimulus periodT:

FIG. 5. Stationary ISI distributions for slow stimuli. Noise in
tensities areD56.231026 ~solid!, D57.031025 ~dashed!, and
D54.831023 ~dash-dotted!. All other parameters are as in Fig. 3
error bars again indicate simulation results.

FIG. 6. Stationary ISI distributions for fast stimuli. Noise inte
sities areD57.831024 ~solid!, D54.831023 ~dashed!, and D
53.031022 ~dash-dotted!. All parameters are as in Fig. 4, an
error bars are from simulations.
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the neuron can only fire in a small time window within ea
period, and several periods may be skipped in betw
spikes. This indicates a firing pattern that is well pha
locked to the stimulus. ISI distributions with comparab
structure have been found in neurons of the auditory sys
in different species@42,43#. For high noise, the ISI distribu
tions reduce to the refractory peak, i.e., a largely rand
firing pattern.

For intermediate noise, the ISI distributions depe
strongly on the stimulus frequency. For high frequency~Fig.
6!, we find merely a superposition of periodic and refracto
peaks: spikes preferentially occur at intervals that are m
tiples of the stimulus period, but this phase locking is we
This is very different for slow stimuli~Fig. 5!, where the
refractory peak is clearly separated from a wide peak at
5T540, the latter exposing some substructure. This can
understood as follows. The maximum ofr(t) at t5T cor-
responds to two spikes fired each at the optimal phase in
subsequent periods. In contrast, if a period that containe
burst of two spikes is followed by another period containi
a burst, then typically the first spike will be slightly earlie
than the optimal phase, the second one a bit later. Thus
interval between the second spike of the first burst and
first spike of the second burst is shorter than the stimu
period, leading to the side peak att'35. The bursts them
selves give rise to the refractory peak. This again indica
that the spike train is not a stationary renewal process.

Along with results obtained using the Markov chain a
proach, Figs. 3–6 display phase and ISI distributions
tained from simulated trains of 20 000 spikes. The agreem
between Markov model and simulation is excellent. Sou
code for the simulation based on@44# is available on request

III. STOCHASTIC RESONANCE

To assess the performance of the integrate-and-fire ne
as a signal processing device, we evaluate the SNR of
spike train generated in response to periodic input. In do
so, one should keep in mind the purpose of the output sp
train. It has to convey information to other neurons in t
brain within a certain time window, as the brain has to re
spond quickly to stimuli. Therefore, the relevant quantity
the signal-to-noise ratio that can be achieved by measu
the spike train over a finite observation timeTo @45#.

A. Signal-to-noise ratio

The one-sided power spectral density of a stationary sp
train f (t) @as defined in Eq.~6!# over a time intervalTo is
@46#

STo
8 ~v!5

1

pTo
K U E

0

To
f ~ t !eivtdtU2L

5
1

pTo
K (

j ,k

t j ,tk,To

eiv(t j 2tk)L . ~16!

The average is to be taken over the ensemble of all s
trains, that is, over the set of all conditional ISI distributio
and their (j 2k)-fold convolutions. This problem appears in
tractable.
n
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The situation is greatly simplified ifv is the stimulus
frequencyV or one of its harmonics. Expressing the spi
times ast j5(mj1c j /2p)T, Eq. ~16! for v5nV simplifies
to

STo
8 ~nV!5

1

pTo
K (

j ,k

t j ,tk,To

ein(c j 2ck)L , ~17!

wheren,mj are integers,c jP@ 0,2p), andT52p/V is the
stimulus period. In the observation periodTo , on average
To /^t& spikes will occur, regardless of the detailed structu
of the spike train. We therefore fix the upper limit of th
summation atNo5 bTo /^t& c, where^t& is the average inter-
val length from Eq.~15! and bxc is the largest integer no
exceedingx. This yields as an approximation,

STo
8 ~nV!'STo

~nV!5
1

pNo^t& K (
j ,k51

No

ein(c j 2ck)L .

~18!

The task of computing an expectation with respect to
possible spike trains is now reduced to that of averaging o
all possible sequences ofspike phases. Their distribution and
correlations are completely characterized by the transi
matrix T, permitting for evaluation of Eq.~18! in closed
form. The actual calculation is straightforward albeit lengt
algebra and is provided in the Appendix. The final result m
be written as

STo
~nV!5

1

p^t&
@11A~n,No!1~No21!B~n!#, ~19!

where the functionsA(n,N0) andB(n) are given in the Ap-
pendix. Note thatA(n,No) is bounded asNo→`. For a Pois-
sonian spike train, bothA andB are identically zero, yielding
a white power spectrum@34#.

At first, it might seem surprising that the spectrum co
tains a term, (No21)B(n), that scales linearly with the num
ber of spikes in the train. This is a consequence of the p
odic component of the spike train introduced by the drivi
stimulus, leading to a mixed spectrum consisting of a c
tinuous background and a discrete spectrum of harmo
@46#. For infinite observation time, i.e.,No→`, this gives
rise to the terms;d(v2nV) in the power spectrum.

A typical power spectrum is shown in Fig. 7, indicatin
close agreement of Eq.~19! with results obtained by numeri
cal Fourier transformation of simulated spike trains. The
proximation made in fixing the summation limit in Eq.~18!
is, therefore, well justified. The dip in the noise backgrou
of the spectrum at low frequencies is a consequence of
refractory period of the neuron, while the weak hump atv
'1 indicates the presence of bursts@47#. Spectra consisting
only of this background have been found in neurons
higher cortical areas of monkeys in the absence of perio
input @48#.

Since the power spectral density can only be evaluate
closed form at multiples of the stimulus frequency, we a
proximate the noise background as Poissonian white n
SP5(p^t&)21 of a spike train of equal intensity@45#. The
signal-to-noise ratioRTo

obtainable from the spike train

within the observation timeTo is, therefore, given by



e-
n
s
R

he
is

-
fre-
am-

rlier
in

arily
se
R
ks

l-

I B,

-

ms,
the
ults
the
ng
as a
sic

s is
fre-

e-

si
m
u

e
of

re-

7014 PRE 59HANS E. PLESSER AND THEO GEISEL
RTo
5

STo
~V!

SP
511AS 1, b To

^t& c D1S b To

^t& c21DB~1!.

~20!

The signal-to-noise ratio for three different stimulus fr
quencies is shown in Fig. 8 vs the noise amplitude, agai
excellent agreement with simulation results. Stochastic re
nance~SR! is clearly present at all frequencies, as the SN

FIG. 7. Power spectral density from an observation time ofTo

5200 for the same stimulus as in Figs. 3~b! and 3~e!. Circles indi-
cate results at stimulus harmonics from the Markov chain analy
while the drawn out line is obtained by fast Fourier transform fro
a simulated train of 20 000 spikes. Ticks on the abscissa mark m
tiples of the stimulus periodV50.05p.

FIG. 8. Signal-to-noise ratioRTo
vs noise amplitudeAD for

three different stimulus frequencies:V50.1p ~dashed!, V
50.33p ~solid! and V50.5p ~dash-dotted!. Other parameters ar
m50.95, q50.05, andTo5200. Error bars show standard error
mean from simulated trains of 20 000 spikes.
in
o-

attains its maximum for an intermediate noise level. T
striking feature is that the overall maximum in the SNR
reached at an intermediate frequencyV r'p/3, which we
thus call theresonance frequency. The same qualitative de
pendence of the SNR on noise amplitude and stimulus
quencies is observed over a wide range of stimulus par
eters, including weakly suprathreshold cases (0.4&m,1,
0.4&q/(12m)&1.2; data not shown!.

Note that the stochastic resonance reported in an ea
paper@26# is an artifact of the renewal ansatz employed
that paper. There, the stimulus phase is reset to an arbitr
chosen valuef0 after each spike, and the signal-to-noi
ratio is computed for an infinite observation time. The SN
is maximized for that noise level at which the periodic pea
of the ISI distributionr(tuf0) are centered about the mu
tiples of the stimulus periodT. But if, for low noise, one uses
for each noise levelD a differentf0(D), namely, the mode
of the stationary phase distribution as discussed in Sec. I
the periodic peaks are at multiples ofT for all noise intensi-
ties, whence the SNR does not drop off forD→0 and no
resonance occurs~data not shown!. This observation under
lines the importance of the Markov approach.

B. Time scale matching

In contrast to stochastic resonance in dynamical syste
SR with respect to the noise amplitude is not induced by
matching of time scales in threshold systems, but res
from stochastic linearization of the response function of
neuron@45,49#. In contrast, the additional resonance alo
the frequency axis arises in the integrate-and-fire neuron
consequence of matching the stimulus period to the intrin
time scale of the neuron in an appropriate manner. Thi
demonstrated in Fig. 9. For a stimulus at the resonance
quencyV r , the peak att5T in the stationary ISI distribu-
tion can ‘‘grow’’ in place as noise is increased, without b

s,

l-

FIG. 9. Interspike-interval distributions for the resonance f
quency V r and three noise intensitiesD51.331024 ~solid!, D
57.831024 ~dashed! and D54.831023 ~dash-dotted!; other pa-
rametersm50.95, q50.05.
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ing disturbed by the refractory peak. Indeed, the latter ar
at the location of the first periodic peak and shifts away fr
t5T only for very large noise. In this way, the firing rate
the neuron can be increased without loosing the phase l
ing to the stimulus. Compare this to the cases of lower~Fig.
5! and higher~Fig. 6! frequencies: in both cases, high firin
rates can only be achieved by raising the noise amplitud
a point where the refractory peak has either replacedV
,V r) or smeared out (V.V r) the periodic peaks, resultin
in a firing pattern poorly phase locked to the stimulus.

This competition of precision and intensity is demo
strated by a phenomenological ansatz for the SNR. A m
sure of phase locking between stimulus and response is
vector strengthCs5u^eic&u, where c are the spike phase
@50#. Cs51 indicates perfect andCs50 indicates no lock-
ing. If the neuron attempts to measure the degree of ph
locking from a train ofN5To /^t& spikes, the quality of
measurement will be;AN. Thus, we expect that the signa
to-noise ratioRphen will roughly be given by

Rphen'CsAN5CsATo

^t&
. ~21!

Figure 10 demonstrates that this simple model describes
behavior of the SNR well. In particular, the two-fold stocha
tic resonance is reproduced.

In short, to elicit a strong output signal from the mod
neuron, a sufficient input noise level is required. But t
comes at a cost, as the quality of the output, i.e., the pr
sion of the phase locking, deteriorates as noise is added.
maximum SNR represents the optimal compromise betw
signal strength and quality.

IV. DISCUSSION

In this paper, we have shown that the periodically driv
integrate-and-fire neuron can be analyzed in the framew

FIG. 10. Signal-to-noise ratioRphen from the phenomenologica
model of Eq.~21!. All parameters are as in Fig. 8, with stimulu
frequenciesV50.1p ~dashed!, V50.33p ~solid! and V50.5p
~dash-dotted!.
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of a Markov process. This avoids the unrealistic assump
of a stimulus reset after each spike, the most serious sh
coming of previous work@25,26#, and this answers question
~1! raised by Gammaitoniet al. in Sec. V 4 C of their review
@2#. Their second question concerns the fact that the ne
membrane is a rectifier: even a strong negative input cur
will not lower the membrane potential more than a few m
livolts below the reset potentialv0. This would indeed be a
problem if the dc offsetm of the input were much smalle
than the amplitudeq of the ac stimulus. Preliminary evidenc
suggests that the best fit of interspike-interval distributio
generated by the model with experimental data from the c
auditory system@43# is obtained for subthreshold stimu
with m@q. In this regime, the membrane potential is quick
raised tov01m and then oscillates around this level, una
fected by rectification. Finally, Gammaitoniet al. question
the validity of the approximations used to compute the
distributions in@25#. This matter is avoided here by numer
cally computing these distributions. A study of the validi
of approximate closed-form ISI distributions will be give
elsewhere@51#.

The Markov formalism presented in this paper is app
cable to any periodically driven stochastic process with
reset. The only required ingredients are the conditional fi
passage-time distributionsr(tuf) and the iteration equation
~5!. The generalization to more complex stimuli, e.g., inclu
ing amplitude modulation, is straightforward. We recen
became aware of a similar approach to hopping in bista
potentials@52,53#.

With the Markov machinery at hand, we have demo
strated that the signal-to-noise ratio of the output of the n
ron is maximized at an optimal noise amplitude for fix
frequency and at a resonance frequency for fixed noise
tensity. That is, the noise induces abona fideresonance with
respect to the stimulus frequency, as it has been describe
bistable systems before in terms of residence-ti
~interspike-interval! distributions @54#. This work has re-
cently been criticized@53# on the grounds that it would find
stochastic resonance even in a Poissonian spike train
exponential ISIr(t) and flat spike phase distributionx(f).
This criticism does not apply to our study, however, as
would have a SNR ofR51 for a Poisson process indepe
dent of noise amplitude and stimulus frequency. We are t
confident that the results reported here are not an artifac

A twofold resonance as demonstrated in this paper fo
nondynamical threshold system has been predicted for a
riodically modulated, piecewise constant bistable poten
@55#. This indicates that, as for ‘‘classic’’ stochastic res
nance, the effects are universal and do not depend on de
of the signal-processing system.

Neurons in the auditory system can phase lock to acou
stimuli with high acuity and utilize this for the precise loca
ization of sound sources@16#. Our results show that stron
signals that are well phase locked to a stimulus may
achieved in spite of the noise ubiquitous in the neural s
tem. Stochastic resonance might, therefore, be one of
underlying mechanisms of stereo hearing. First qualitat
comparisons indicate good agreement between resp
properties of the integrate-and-fire neuron and of audit
neurons. An intriguing question in this respect is the r
evance of thebona fideSR to the neural system. It may serv
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to tune neurons as bandpass filters of a special kind: o
stimuli in a certain frequency window will be transmitte
with high intensity and precise phase locking. A detaile
study will be the topic of a future publication.
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APPENDIX: COMPUTING THE POWER SPECTRAL
DENSITY

To derive Eq.~19!, i.e.,

STo
~nV!5

1

pM ^t& K (
j ,k51

M

ein(c j 2ck)L
5

1

p^t&
@11A~n,M !1~M21!B~n!#,

we split the double sum into the diagonal and off-diago
terms,

STo
~nV!5

1

p^t&
@11hM~nV!1hM* ~nV!#, ~A1!

hM~nV!5
1

M (
k51

M

(
j 51

M2k

^ein(ck1 j 2ck)&, ~A2!

the asterisk denoting complex conjugation andM5 bTo /t c.
Since we are considering a stationary Markov process

ck are identically distributed according tox(s), while corre-
lations betweenck and ck1 j are given by thej th power of
the transition matrixT yielding

^ein(ck1 j 2ck)&5â~n! tr
•T j

•b̂~n!, ~A3!

with vectors

âtr~n!5~1,einDc,e2inDc, . . . ,e(L21)inDc!,

b̂tr~n!5$x(s)~0!, . . . ,e2(L21)inDcx(s)@~L21!Dc#%.

Upon inserting Eq.~A3! into Eq. ~A2!, we observe that
the expression forhM depends only onj but not onk so that
we may perform the outer summation to obtain
v.
ly

e-

-
,
d.

l

ll

hM~nV!5âtr~n!F 1

M (
j 51

M21

~M2 j !T j G b̂~n!.

DiagonalizingT leads to

hM~nV!5a~n! tr
•S(M )

•b~n!. ~A4!

Here, the diagonal matrixS(M ) is given by

Smm
(M )55

M21

2
for m51

lm

12lm
1

1

M

lm~lm
M21!

~lm
M21!2

for m.1,

~A5!

with

T5C•L•C21, L5diag~1.ul2u> . . . >ulLu!,

a~n!5Ctrâ~n!, b~n!5C21b̂~n!.

Inserting Eq.~A4! into Eq. ~A1!, we have

STo
~nV!5

1

p^t&
$112 Re@atr~n!S(M )b~n!#%. ~A6!

Finally, we split the matrixS(M ) into the parts pertaining
to the discrete and the continuous parts of the spectrum
define the functionsA andB,

S(M )5diagS M21

2
,0, . . . ,0D1diag~0,S22

(M ) , . . . ,SLL
(M )!,

A~n,M !52 Re@atr~n!diag~0,S22
(M ) , . . . ,SLL

(M )!b~n!#,

B~n!5Re@a1~n!b1~n!#.

Rewriting Eq.~A6! accordingly, we arrive at the desired e
pression for the power spectral density,

STo
~nV!5

1

p^t&
@11A~n,M !1~M21!B~n!#.

To see thatA is bounded asM→`, note thatA depends
on M only through the diagonal entries ofS(M ) with m.1
and ulmu,1. For these we have

lim
M→`

uSmm
(M )u5U lm

12lm
U,`, m.1.
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