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We analyze the effect of noise in integrate-and-fire neurons driven by
time-dependent input and compare the diffusion approximation for the
membrane potential to escape noise. It is shown that for time-dependent
subthreshold input, diffusive noise can be replaced by escape noise with
a hazard function that has a gaussian dependence on the distance between
the (noise-free) membrane voltage and threshold. The approximation is
improved if we add to the hazard function a probability current propor-
tional to the derivative of the voltage. Stochastic resonance in response
to periodic input occurs in both noise models and exhibits similar char-
acteristics.

1 Introduction

Given the enormous number of degrees of freedom in single neurons due
to millions of ion channels and thousands of presynaptic signals impinging
on the neuron, it seems natural to describe neuronal activity as a stochastic
process (Tuckwell, 1989). Since in most neurons the output signal consists
of stereotypical electrical pulses (spikes), the theory of point processes has
long been employed to analyze neuronal activity (Perkel, Gerstein, & Moore,
1967; Johnson, 1996).

The simplest point process model of neural responses to stimuli is that of
an inhomogeneous Poisson process with an instantaneous firing rate that
depends on the stimulus, and thus on time. Models of this type have success-
fully been employed to characterize neural activity in the auditory system
(Siebert, 1970; Johnson, 1980; Gummer, 1991) and to investigate the facili-
tation of signal transduction by noise, a phenomenon known as stochastic
resonance (Collins, Chow, Capela, Imhoff, 1996). Stevens and Zador (1996)
have recently suggested that in the limit of very low firing rates, Poisson
models of neuronal activity indeed capture most of the dynamics of more
complex models.
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On the other hand, much recent research indicates that the precise timing
of neuronal spikes plays a prominent role in information processing (Rieke,
Warland, de Ruyter van Steveninck, & Bialek, 1997). Thus, spiking neuron
models are required that provide more insight into the relation between
the input current a neuron receives and the spike train it generates as out-
put. In short, these model neurons generate an output spike whenever the
membrane potential v, driven by an input current I, reaches a threshold 2;
afterward the potential v is reset to some value vres. For a recent review, see
Gerstner (1998).

The archetypical spiking neuron model is the integrate-and-fire neuron
introduced by Lapicque (Tuckwell, 1988). Stein (1965) first replaced a con-
tinuous input current with more realistic random sequences of excitatory
and inhibitory input pulses. If each pulse is small and a large number of
pulses impinges on the neuron per membrane time constant, the effective
input to the neuron can be described by a time-dependent deterministic
current I(t) and additive noise ξ(t), which is taken to be gaussian. In this
limit, the evolution of the membrane potential from reset to threshold is a
time-dependent Ornstein-Uhlenbeck process with the threshold as an ab-
sorbing boundary (Johannesma, 1968; Lánský, 1997). We will refer to this as
the diffusion approximation of neuronal activity.

The separation of the total input current into a deterministic part I(t) and
noise is much less clear-cut in neuronal modeling than in physical processes
such as Brownian motion. Recent research suggests that the variability of in-
put spike arrival times plays a much greater role than intrinsic noise (Mainen
& Sejnowski, 1995; Bryant & Segundo, 1976). Stochastic spike arrival may
arise in noise-free networks with heterogeneous connections as shown in
recent theoretical studies (van Vreeswijk & Sompolinsky, 1996; Brunel &
Hakim, 1999). In these studies balanced excitation and inhibition prepared
the neuron in a state that is just subthreshold. Spikes are then triggered by
the fluctuations in the input. Neurons in this regime have a large coefficient
of variation just as cortical neurons. For a recent review, see König, Engel,
& Singer, 1996.

The subthreshold regime is also particularly interesting from the point
of view of information transmission. Neurons optimally detect temporal
information if the mean membrane potential is roughly one standard de-
viation of the noise below threshold (Kempter, Gerstner, van Hemmen, &
Wagner, 1998). The improvement of signal transduction by noise, known
as stochastic resonance, also appears to be limited to this regime (Bulsara
& Zador, 1996). Therefore we will focus here on neurons driven by weakly
subthreshold input—those neurons that would be silent in the absence of
noise.

In this work, we take the diffusion approximation sketched above as the
reference model for neuronal noise. A disadvantage of this model is that it
is difficult to solve analytically, particularly for time-dependent input I(t).
The interval distribution for a given input I(t) is mathematically equivalent
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to a first-passage-time problem, which is known to be hard. Our aim in
this study is to replace the stochasticity introduced by the diffusion term
by a mathematically more tractable inhomogeneous point process. To this
end, we investigate various escape processes across the firing threshold.
An escape process is completely described by a hazard function h(t), which
depends only on the momentary values of the membrane potential v(t) and
the input current I(t). We want to identify that function h which reproduces
as closely as possible the behavior of the diffusion model, for both periodic
and aperiodic inputs. We demonstrate that the optimal hazard function not
only reproduces the generation of individual spikes well, but that complex
response properties such as stochastic resonance are preserved.

2 Integrate-and-Fire Neuron Models

2.1 Diffusion Model. Between two output spikes, the membrane poten-
tial of an integrate-and-fire neuron receiving input I(t) evolves according to
the following Langevin equation (Tuckwell, 1989):

v̇(t) = −v(t)+ I(t)+ σξ(t). (2.1)

Upon crossing the threshold, v(t) = 1, a spike is recorded and the potential
reset to v = 0. ξ(t) is gaussian white noise with autocorrelation

〈
ξ(t)ξ(t′)

〉 =
δ(t− t′). The diffusion constant σ is the root mean square (rms) amplitude of
this background noise. Note that we have used dimensionless units above;
time is measured in units of the membrane time constant, while voltage
is given in terms of the threshold 2. As a consequence of the diffusion
approximation, the input I(t)will not contain any δ-pulses, and v(t) follows
continuous trajectories from reset potential to threshold.

Let us denote the firing time of the last output spike by t∗. In the noise-
free case (σ = 0), the potential v(t) for t > t∗ depends on the input I(t′) for
t∗ < t′ < t and can be found by integration of equation 2.1:

v0(τ | t∗, I(·)) = e−τ
∫ τ

0
I(t∗ + s) es ds. (2.2)

Our notation makes explicit that the noise-free trajectory can be calculated
given the last firing time t∗ and the input I. The subscript 0 is intended to
remind the reader that equation 2.2 describes the noise-free trajectory. The
next output spike of the noiseless model would occur at a time t∗+τ defined
by the first threshold crossing,

τ = min
{
τ ′ > 0 | v0(τ

′ | t∗, I(·)) ≥ 1
}
. (2.3)

In the presence of noise, the actual membrane trajectory will fluctuate
around the reference trajectory (see equation 2.2) with a variance of the
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order of σ . We can no longer predict the exact timing of the next spike,
but we may ask for the probability distribution ρ(τ | t∗, I(·)) that a spike
occurs at t∗ + τ , given that the last spike was at t∗ and the current is I(t′) for
t∗ < t′ < t∗ + τ :

ρ(τ | t∗, I(·))1τ = Pr


Spike in [t∗ + τ, t∗ + τ +1τ)
given the last reset at t∗ and input
I(t∗ + τ ′), τ ′ > 0.

 . (2.4)

Our notation makes explicit that no information about the past of the neuron
going further back than the last firing or reset at t∗ is needed. We may think
of equation 2.4 as a conditional interspike interval (ISI) distribution. For the
diffusion noise model, analytical expressions for the interval distributions
are not known, except for some rare special cases (Tuckwell, 1989). It is,
however, possible to calculate these ISI distributions numerically based on
Schrödinger’s renewal ansatz (Plesser & Tanaka, 1997; Linz, 1985). (Source
code is available from us on request.) In the following we use the diffusion
model as the reference noise model.

If there were no absorbing threshold, equation 2.1 would describe free
diffusion with drift. Then the pertaining Fokker-Planck equation,

∂

∂τ
Pf
(
v, t∗ + τ | t∗) = − ∂

∂v

[−v+ I(t∗ + τ)]Pf
(
v, t∗ + τ | t∗)

+ σ
2

2
∂2

∂v2Pf
(
v, t∗ + τ | t∗) , (2.5)

with boundary conditions limv→±∞Pf (v, t∗ + τ | t∗) = 0 has the solution

Pf
(
v, t∗ + τ | t∗) = 1√

2πη2(τ )
exp

{
− [v− v0(τ | t∗, I(·))]2

2η2(τ )

}
, (2.6)

where η2(τ ) = σ 2

2

(
1− e−2τ ). As the exponential term in η(τ)decays at twice

the rate of those in v0(τ | t∗, I(·)), we may approximate for τ À 1

Pf
(
v, t∗ + τ | t∗) ≈ 1√

πσ
exp

{
− [v− v0(τ | t∗, I(·))]2

σ 2

}
. (2.7)

2.2 Escape Noise and Hazard Functions. In a noise-free model, the
membrane trajectory v0(τ | t∗, I(·)) is given by equation 2.2, and the time of
the next spike determined by equation 2.3. In the presence of noise, firing is
no longer precise but may occur even though the noise-free trajectory has
not yet reached threshold. A simple intuitive noise model can be based on
the idea of an escape probability: at each moment of time, the neuron may
fire with an instantaneous rate h, which depends on the momentary distance
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between the noise-free trajectory v0 and the threshold, and possibly the mo-
mentary input current as well. More generally, we may introduce a hazard
function h(τ | t∗, I(·)) that describes the risk of escape across the threshold
and depends on the last firing time t∗ and the input I(t′) for t∗ < t′ < t∗ + τ .
Once we know the hazard function, the ISI distribution is given by Cox &
Lewis, 1966)

ρ(τ | t∗, I(·)) = h(τ | t∗, I(·)) exp
[
−
∫ τ

0
h(s | t∗, I(·))ds

]
. (2.8)

The exponential term accounts for the probability that a neuron survives
from t∗ to t∗+τ without firing; the factor h(τ | t∗, I(·)) gives the rate of firing
at t∗ + τ , provided that the neuron has survived thus far.

We discuss in this work four models of simplified neuronal dynamics,
all of which aim to approximate the diffusion model by an escape noise
ansatz. The various models differ in the choice of the function h(τ | t∗, I(·))
(see Figure 1). These hazard functions depend on the noise-free membrane
potential v0 and the input current I only through two scaled quantities. One
is the momentary distance x between the membrane potential v0 and the
threshold 2 = 1, scaled by the noise amplitude:

x(τ | t∗) = 1− v0(τ | t∗)
σ

. (2.9)

The other is the net current charging the membrane in the noise-free case,
also scaled by the noise amplitude:

Y(τ | t∗) = −v0(τ | t∗)+ I(t∗ + τ)
σ

= 1
σ

d
dτ

v0(τ | t∗). (2.10)

The last equality follows immediately from equation (2.1) with σ = 0 and
indicates that Y can be interpreted as a relative velocity of the noise-free
membrane potential v0.

2.2.1 Arrhenius Model. As long as the membrane potential v stays suf-
ficiently far below threshold, we may describe neuronal firing as a noise-
activated process. The latter is most easily characterized by an Arrhenius
ansatz for the hazard function (van Kampen, 1992):

hArr(τ | t∗) = w exp
{
− (1− v0(τ | t∗))2

σ 2

}
= w e−x(τ |t∗)2 ,

wopt = 0.95. (2.11)

Here, 1 − v0(τ | t∗) is the voltage gap that needs to be bridged to initiate
a spike. Its square may be interpreted as the required activation energy
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Figure 1: Hazard functions h(v) versus membrane potential v. (a) Arrhe-
nius model (solid), error function model (dash-dotted), and Tuckwell model
(dashed). (b) Arrhenius&Current model for different values of the input cur-
rent: I = 0.95 (solid), 1 (dash-dotted), and 1.1 (dashed); the case I = 0 is drawn
dotted for comparison. In all cases, the threshold is at v = 1 and the noise am-
plitude is σ = 0.1. The vertical dotted lines mark one noise amplitude below
threshold.

and σ 2 as the energy supplied by the noise. The free parameter w was
determined by an optimization procedure described below. We found w =
wopt = 0.95 to be the optimal value. Note that for strongly superthreshold
stimuli (v0 À 1), the hazard function vanishes exponentially. This might
seem paradoxical at first, but is of little concern as long as the input I(t)
contains no δ-pulses and v0 reaches the threshold only along continuous
trajectories. Then, superthreshold levels of the potential are accessible only
via periods of maximum hazard, so that the neuron will usually have fired
before v0 becomes significantly superthreshold.

2.2.2 Arrhenius&Current Model. Strong, positive transients in the input
current will push the membrane potential toward and across the threshold in
a time that is short on the timescale of diffusion. Figuratively, the membrane
potential distributionPf is shifted as a whole. The simple Arrhenius ansatz
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will not be able to reproduce these transients well. We thus consider, in
addition to the diffusive current, the probability current induced by shifting
the probability density at the threshold, Pf (2 = 1, τ | t∗), across threshold
with the speed of the center of this distribution, d

dτ v0(τ | t∗) = −v0(τ |
t∗)+ I(t∗ + τ). Since there can be no drift from above threshold downward,
we set all negative currents to zero and obtain the drift probability current:

Jdrift(τ | t∗) = [−v0(τ | t∗)+ I(t∗ + τ)]+Pf
(
2 = 1, τ | t∗)

= [Y(τ | t∗)]+√
π

e−x(τ |t∗)2 .

Pf (v, τ | t∗) is again the free gaussian distribution given by equation 2.7
and [x]+ ≡ (x+|x|)/2. Together with the original, diffusive Arrhenius term,
we obtain the hazard function:

hAC(τ | t∗) = hArr(τ | t∗)+ Jdrift(v, τ | t∗)

=
(

w+ [Y(τ | t∗)]+√
π

)
e−x(τ |t∗)2 , wopt = 0.72. (2.12)

As before, w is a free parameter with optimal value wopt. Below we will refer
to the first term of equation 2.12 as the diffusion term and to the second one
as the drift term.

2.2.3 Sigmoidal Model. Abeles (1982) has suggested that the hazard
should be related to the proportion of the free membrane potential distribu-
tionPf that is beyond the threshold, that is, h(τ | t∗) ∼ ∫∞

2
Pf (v, τ | t∗) dv =

erfc x(τ | t∗). This ansatz is questionable, as the correct potential distribution
vanishes beyond the threshold. In view of the widespread use of sigmoidal
activation functions in the theory of neural networks (Wilson & Cowan,
1972), we nevertheless test a sigmoidal model but provide it with two free
parameters w1 and w2:

herf(τ | t∗) = w1 erfc[x(τ | t∗)− w2], wopt
1 = 0.66 , wopt

2 = 0.53. (2.13)

erfc(x) = 1 − erf(x) is the complementary error function. Given the great
similarity of the error function and the hyperbolic tangent, we have not
extensively investigated the latter. Preliminary results indicate negligible
differences (data not shown).

2.2.4 Tuckwell Model. Suppose that the input I(t) varies sufficiently
slowly so that we may, at any point, consider the membrane potential of
the neuron to be stationary. A stationary potential v0(τ | t∗) corresponds to
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a constant input current Is = v0(τ | t∗). In this case, the average firing rate,
and thus the hazard, can be approximated in closed form (Tuckwell, 1989):

hTuck(τ | t∗) = x(τ | t∗)√
π

e−x(τ |t∗)2 θ(x(τ | t∗)). (2.14)

The Tuckwell model has no free parameter. The Heaviside step function θ(x)
is introduced to avoid negative values of the hazard. The approximation
made in computing the rate is valid only for stimuli far below threshold,
that is, x(τ | t∗) À 1. Note that this rate is identical to the diffusive current
at the location of the threshold for the threshold-free case,

Jdiff
(
v = 1, τ | t∗) = σ 2

2
∂2

∂v2Pf
(
v, τ | t∗)∣∣∣∣

v=1
,

where Pf (v, τ | t∗) is the free gaussian distribution (see equation 2.7).

2.3 Input. To compare the responses of integrate-and-fire neurons with
various hazard functions to those with diffusion noise, we have to choose
an input scenario. We will try to be as general as possible and consider
time-dependent inputs with both aperiodic and periodic time course. The
general form of the input is an oscillatory component of rms amplitude q
fluctuating around a DC value µ,

I(t) = µ+ q
√

2√∑
k α

2
k

∑
j

αj cos(ωjt+ φj), (2.15)

where ωj = j1ω with 1ω the base frequency. Note that q2 = limT→∞ 1
T

∫ T
0

(I(t)−µ)2 dt is the expected variance of the current. The membrane potential
in response to the input in the absence of noise is found from equation 2.2:

v0(τ | t∗) = µ
(
1− e−τ

)+ q
√

2
[
F(t∗ + τ)− e−τ F(t∗)

]
,

F(t) = 1√∑
k α

2
k

∑
j

αj√
1+ ω2

j

sin
(
ωjt+ φj + acotωj

)
. (2.16)

Aperiodic stimuli are characterized by a cutoff frequency Äc and are
generated by drawing the phases φj at random from a uniform distribution
over [0, 2π), while the amplitudes are given by

αj =


0 ωj ≤ 0,

1 0 < ωj ≤ Äc,

exp(− 1
2 (j− jc)2) jc < j.

(2.17)
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Periodic input is taken to be cosinusoidal with frequency Ä = ωk. We set
αj = δjk in equation 2.15 and obtain

I(t) = µ+ q
√

2 cos(Ät+ φ).
To compare the performance of the various models across stimuli, we

describe each stimulus by its relative distance from threshold,

ε =
1− (µ+

√
2
〈
1v2

0

〉
)

σ
, (2.18)

where〈
1v2

0

〉
= lim

T→∞

∫ T

0
(v0(τ | t∗)− µ)2 dτ = q2∑

k α
2
k

∑
j

α2
j

1+ ω2
j

is the rms amplitude of the membrane potential oscillations in the noise-free
case. For periodic input, the factor of

√
2 in the definition of ε yields

σε = 1−
(
µ+ q

√
2√

1+Ä2

)
= 1− sup

τ≥0
v0(τ | t∗).

Thus subthreshold stimuli have ε > 0, superthreshold stimuli ε < 0. Note
that for periodic stimuli ε > 0 indeed guarantees that the stimulus is sub-
threshold; in the absence of noise, the neuron never fires. For aperiodic
input, however, the definition holds only in an rms sense, so that v0 may
occasionally cross the threshold even for ε > 0.

2.4 Choice of Stimuli. The results presented here were obtained from
a set of 14,400 periodic and 14,400 aperiodic stimuli. DC inputs were in the
range 0.55 ≤ µ ≤ 1.2, AC amplitudes approximately 0.1(1 − µ) < q

√
2 <

1.5(1 − µ), stimulus/cutoff frequencies 0.02π ≤ Äc ≤ 2π . For each set of
these parameters, five phases were chosen randomly from [0, 2π) for peri-
odic stimuli and five different random stimuli generated for the aperiodic
case. Each stimulus was tested at eight noise amplitudes, randomly chosen
so that the stimuli would have a roughly uniform distribution with respect
to their relative distance from threshold with 0.1 < |ε| < 3. Some two-thirds
of all stimuli were subthreshold.

Some stimuli were excluded from analysis. The rejection was based solely
on the ISI distributions computed for the diffusion approximation. Specif-
ically, stimuli were excluded if the firing probability was so low that their
norm was insufficient (

∫ T
0 ρ(τ)dτ < 0.8), where T was 20 stimulus periods

for periodic and 409.4 for aperiodic stimuli. Furthermore, stimuli were re-
jected if the numerical algorithm was unstable at the time resolution chosen.
We verified for some of these cases that with appropriate discretization,
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the algorithm did converge. The instabilities were caused by very steep
threshold crossings of the membrane potential in combination with small
noise.

After defective stimuli had been excluded, we were left with 8714 peri-
odic stimuli (out of these 4706 subthreshold stimuli) and 12,181 aperiodic
stimuli (8027 subthreshold).

2.5 Parameter Optimization. The weights in the models with parame-
ters were chosen as follows. We split the entire set of stimuli into an op-
timization and a validation set. For each single stimulus, we determined
that weight w or set of weights w1, w2 that minimized the error E defined
in equation 3.1 below for this one stimulus, using MATLAB minimization
routines. We repeated the procedure for all stimuli in the optimization set
and constructed the distribution of weights found in this way. The weights
wopt [respectively, wopt

1 ,wopt
2 ] are the medians of the weight distributions.

Evaluating the error E over both the optimization and the validation set with
the fixed weight wopt yielded identical results. Overfitting can therefore be
excluded.

3 Results

3.1 ISI Distributions. Figure 2 shows the ISI distribution evoked from
the diffusion model by a subthreshold aperiodic stimulus. The predicted ISI
distribution for the Arrhenius&Current model (dashed) has been based on
equation 2.4. To observe this ISI in an experiment, one would present the
stimulus shown as the dotted line in Figure 2c repeatedly, starting over at
τ = 0 each time a spike has been fired. We may also think of Figure 2a as a
PSTH (peri-stimulus time histogram), where each spike triggers a reset of
the stimulus.

To measure the agreement between this reference solution and the distri-
butions rendered by the escape noise models, we use the relative integrated
mean square error (Scott, 1992):

E =
∫∞

0 dτ [ρ(τ | t∗ = 0)− ρesc(τ | t∗ = 0)]2∫∞
0 dτ ρ(τ | t∗ = 0)2

. (3.1)

Here, ρ(τ | t∗ = 0) is the ISI distribution for the diffusion model, while
ρesc(τ | t∗ = 0) is the distribution obtained from any one of the escape noise
models. The example in Figure 2 corresponds to an error of E = 0.026.

Figure 3 shows the cumulative distribution of the error E for all four
models. The Arrhenius&Current model obviously performs significantly
better than all the other models for sub- and superthreshold stimuli, both
periodic and aperiodic, while the Tuckwell model does worst. The Arrhe-
nius and the error function model are tied for second, with the Arrhenius
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Figure 2: (a) Interval distribution from the diffusion model (solid) and the Ar-
rhenius&Current model (dashed) for aperiodic input with DC offset µ = 0.85,
AC amplitude q = 0.1, cutoff frequency Äc = π , and noise amplitude σ = 0.1.
The relative distance from threshold is ε = 0.88 and the error E = 0.026. (b) Haz-
ard as a function of time for the Arrhenius&Current model (solid). The dashed
line is the diffusive component of the hazard defined in equation 2.12. (c) In-
put current (dotted) and noise-free membrane potential for the given stimulus
(solid). The membrane potential stays below the threshold (dashed) but ap-
proaches it closely around τ ≈ 27. Note that peaks in the input current in (c)
lead to sharp transients of the hazard (b) that would not be reproduced correctly
by the diffusion term alone. Thus the firing probability of the neuron is corre-
lated to maxima of the current rather than the membrane potential, in excellent
agreement with the exact diffusion model; see the nice fit in a.
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Figure 3: Cumulative distribution of the relative mean square error E over
all stimuli for Arrhenius (solid), Arrhenius&Current (dash-dotted), error func-
tion (dashed), and Tuckwell (dotted) model. The stimuli were (a) subthreshold
periodic, (b) superthreshold periodic, (c) subthreshold aperiodic, and (d) su-
perthreshold aperiodic. To interpret the cumulative distributions, let us study
the likelihood that the error E of our approximation is smaller than 0.1. We
may read off from the graphs in, for example, a, that for subthreshold periodic
stimuli, the Tuckwell model would give a probability of E ≤ 0.1 of about 50%,
whereas the Arrhenius model and the error function give about 80% and the
Arrhenius&Current model a probability of more than 95%.

model yielding slightly smaller errors for superthreshold stimuli. To quan-
tify the performance of the models, we give in Table 1 the median and 90th
percentile of the error for all models. Note that for the Arrhenius&Current
model for all stimulus conditions, the error is E < 0.077 in 90% of all cases.
We therefore conclude that this model provides an excellent approximation
to the dynamics of the diffusion model of neuronal activity.

We now describe in more detail how the model error depends on the
stimuli and briefly discuss why the models perform so differently. Figure 4
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Table 1: Median (= 50th) and 90th Percentiles of Errors E.

Periodic Aperiodic Periodic Aperiodic
Subthreshold Subthreshold Superthreshold Superthreshold Overall
50% 90% 50% 90% 50% 90% 50% 90% 50% 90%

Arrhenius 0.055 0.148 0.075 0.336 0.157 0.409 0.130 0.375 0.091 0.334
Arrhenius
&Current 0.018 0.044 0.024 0.070 0.042 0.090 0.034 0.090 0.026 0.077
erf 0.061 0.147 0.083 0.346 0.189 0.429 0.160 0.397 0.103 0.358
Tuckwell 0.137 0.333 0.242 0.837 0.747 0.896 0.713 0.901 0.398 0.864

shows the error of the models versus relative distance from threshold of
the stimuli, for both periodic and aperiodic stimuli. All models perform
better for sub- than for superthreshold stimuli, but the Arrhenius&Current
is relatively good across the entire range. Note that the Tuckwell model
becomes quite good for periodic stimuli that are far below threshold (ε > 1),
as is to be expected, since the Tuckwell approximation is valid in this regime.
It does not fare as well for aperiodic stimuli, for they may contain intervals
during which the membrane potential of a subthreshold stimulus comes
close to threshold.

3.2 Stochastic Resonance. Recent years have seen mounting evidence
that signal transmission in neurons can be improved by noise, an effect
known as stochastic resonance (Douglass, Wilkens, Pantazelou, & Moss,
1993; Wiesenfeld & Moss, 1995; Cordo et al., 1996; Levin & Miller, 1996;
Moss & Russell, 1998). The typical experimental paradigm is to stimulate
a neuron sinusoidally, adding noise of varying intensity, and to measure
the signal-to-noise ratio (SNR) of the spike train elicited from the neuron. If
this SNR peaks for nonvanishing input noise, the system is said to exhibit
stochastic resonance. (For a recent review of the field, see Gammaitoni,
Hänggi, Jung, & Marchesoni, 1998.)

Plesser and Geisel (1999) have demonstrated that noise can induce a fur-
ther kind of resonance in periodically stimulated integrate-and-fire neurons:
the optimal SNR is attained for a particular stimulation frequency. This latter
resonance arises by matching the period of stimulation to the timescale set
by the membrane time constant of the neuron. We shall show here that the
simplified Arrhenius&Current model reproduces this behavior well and
that it is thus well suited to investigate integrate-and-fire dynamics. (For
details of the methods, see Plesser & Geisel, 1999.)

Briefly, one proceeds as follows to obtain the SNR in response to si-
nusoidal stimulation. For periodic input I(t) = µ + q cos(Ät + φ), the ISI
distributions ρ(τ | t∗, I(·)) depend on input and external time only through
the input phase ψ∗ = [Ät∗ + φ0] mod 2π at the time t∗ of the most recent
spike. With respect to this spike phase, the spike train reduces to a Markov
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Figure 4: Error E versus relative distance from threshold ε for (a) Arrhenius,
(b) Arrhenius&Current, (c) error function, and (d) Tuckwell model. Symbols
mark the medians, and vertical bars span the 20th to 80th percentiles of 250
stimuli with neighboring ε-values. Circles indicate periodic stimuli, crosses ape-
riodic ones. ε > 0 corresponds to the regime of subthreshold stimuli. Note the
different scales of the y-axis.

process with transition probability (or kernel),

T (ψk | ψk−1) =
∫ ∞

0
ρ(τ | ψk−1)δ(ψk − [Äτ + ψk−1] mod 2π)

dτ
Ä
, (3.2)

between the phases of the kth and the k − 1st spike. The power spectral
density at the stimulus frequency Ä of a δ-spike train of total length To is
then given by

STo(Ä) =
1
πTo

〈tj,tk<To∑
j,k

eiÄ(tj−tk)

〉
≈ 1
πNo 〈τ 〉

〈
No∑

j,k=1

ei(ψj−ψk)

〉
. (3.3)
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2 = 0.05 andÄ = 0.33π
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model, dashed lines for the Arrhenius&Current model.

Here, tj are the spike times and ψj the spike phases, and we have exploited
that ψj−ψk = [Ä(tj− tk)] mod 2π . The mean ISI length is given by 〈τ 〉, and
No = bTo/〈τ 〉c is the average number of spikes in To. The approximation
in equation 3.3 consists in averaging the number of spikes in To and their
phases separately. Since the correlations between the spike phases ψj are
given by equation 3.2, the right-hand side of equation 3.3 can be evaluated
in closed form. Results are in excellent agreement with spectra computed
via fast Fourier transform from simulated spike trains.

As an estimate of the noise background on which this signal will be trans-
mitted, we use the power spectral density of a Poisson process of the same
mean number of spikes per time as the spike train studied in equation 3.3
(see Stemmler, 1996). A Poisson process with intensity 〈τ 〉−1 has a white
spectrum with power SP = (π 〈τ 〉)−1 (see Cox & Lewis, 1966). The SNR of a
spike train transmitted within a fixed observation period To is then

SNR = STo(Ä)

SP
≈ 1

No

〈
No∑

j,k=1

ei(ψj−ψk)

〉
.

Figure 5 shows results for the integrate-and-fire model with diffusion
noise and Arrhenius&Current escape noise. The agreement is good, indi-
cating that the Arrhenius&Current model is well suited to replace diffusive
noise in the integrate-and-fire neuron when investigating more intricate
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problems of neuronal dynamics. Note in particular that both models show
a twofold stochastic resonance. The SNR exhibits, as always in stochastic
resonance, a peak as a function of the noise amplitude. The height of this
peak is maximal around a stimulus frequency Ä = 0.33π and decreases
for both larger (Ä = π ) and smaller frequencies (Ä = 0.1π ). The optimal
frequency Ä = 0.33π corresponds to a period of T = 6, which should be
compared to the mean ISI length 〈τ 〉 ≈ 9.7 at the resonance. (For a more
detailed discussion of the timescale matching underlying this effect, see
Plesser & Geisel, 1999.)

4 Discussion

We have demonstrated that the dynamics of the integrate-and-fire neuron
with diffusive noise may be well approximated by simple escape noise
models and have identified the Arrhenius&Current hazard function as the
optimal choice of model. Upon periodic stimulation, the SNR of the neuron’s
output exhibits stochastic resonance for the Arrhenius&Current noise in the
same way as it does for diffusive noise. This indicates that this escape noise
model renders the correlations within the spike train—induced by the time-
dependent stimulus—correctly. The relative error of the model depends
only weakly on the stimulus, permitting a widespread use.

Of the remaining models, the pure Arrhenius model finishes as a strong
second, at least for subthreshold stimuli. Compared to the error function
model, it has the additional charm of mathematical simplicity. The model
based on Tuckwell’s approximation of the mean firing rate, in contrast, is
useful only if stimuli are sufficiently subthreshold.

With this study, we have provided a tool for the efficient investigation
of large networks of model neurons. In fact, escape noise models have been
used in the past in the context of the spike response model (Gerstner &
van Hemmen, 1992; Gerstner, 1995), and this study provides additional
support to such simplified treatment of noise. For escape noise models, sig-
nal transmission properties of spiking neurons can be studied analytically
(Gerstner, forthcoming). Several issues remain to be tackled, particularly
the extension of the investigation presented here to the case of colored
noise. Finally, although the Arrhenius&Current model is the best model
we have found so far, this is as yet no proof that it is indeed the optimal
model.
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