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Very large networks of spiking neurons can be simulated efficiently in
parallel under the constraint that spike times are bound to an equidis-
tant time grid. Within this scheme, the subthreshold dynamics of a wide
class of integrate-and-fire-type neuron models can be integrated exactly
from one grid point to the next. However, the loss in accuracy caused by
restricting spike times to the grid can have undesirable consequences,
which has led to interest in interpolating spike times between the grid
points to retrieve an adequate representation of network dynamics. We
demonstrate that the exact integration scheme can be combined naturally
with off-grid spike events found by interpolation. We show that by ex-
ploiting the existence of a minimal synaptic propagation delay, the need
for a central event queue is removed, so that the precision of event-driven
simulation on the level of single neurons is combined with the efficiency
of time-driven global scheduling. Further, for neuron models with linear
subthreshold dynamics, even local event queuing can be avoided, result-
ing in much greater efficiency on the single-neuron level. These ideas
are exemplified by two implementations of a widely used neuron model.
We present a measure for the efficiency of network simulations in terms
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of their integration error and show that for a wide range of input spike
rates, the novel techniques we present are both more accurate and faster
than standard techniques.

1 Introduction

A major problem in the simulation of cortical neural networks has been
their high connectivity. With each neuron receiving input from the order
of 104 other neurons, simulations are demanding in terms of memory as
well as simulation time requirements. Techniques to study such highly con-
nected systems of 105 and more neurons, using distributed computing, are
now available (see, e.g., Hammarlund & Ekeberg, 1998; Harris et al., 2003;
Morrison, Mehring, Geisel, Aertsen, & Diesmann, 2005). The question re-
mains as to whether a time-driven or event-driven simulation algorithm
(Fujimoto, 2000; Zeigler, Praehofer, & Kim, 2000; Sloot, Kaandorp,
Hoekstra, & Overeinder, 1999; Ferscha, 1996) should be used. At first glance,
the choice of event-driven algorithms seems natural, because a neuron can
be described as emitting and absorbing point events (spikes) in continu-
ous time. In fact, for neuron models with linear subthreshold dynamics
and postsynaptic potentials without rise time, highly efficient algorithms
exist (see, e.g., Mattia & Del Giudice, 2000). These exploit the fact that
threshold crossings can occur only at the impact times of excitatory events.
If more general types of neuron models are considered, the global algo-
rithmic framework becomes much more complicated. For example, each
neuron may be required to “look ahead” to determine when it will fire
in the absence of new events. The global algorithm then either updates
the neuron with the shortest latency or delivers the event with the most
imminent arrival time (whichever is shorter) and revises the latency calcu-
lations for the neurons receiving the event. (See Marian, Reilly, & Mackey,
2002; Makino, 2003; Rochel & Martinez, 2003; Lytton & Hines, 2005; and
Brette, 2006, for refined versions of such an algorithm.) This decision pro-
cess clearly comes at a cost and becomes unwieldy for networks of high
connectivity: if each neuron is receiving input spikes at a conservative aver-
age rate of 1 Hz from each of 104 synapses, it needs to process a spike every
0.1 ms, and this limits the characteristic integration step size. Therefore,
time-driven algorithms have been found useful for the simulation of large,
highly connected networks. Here, each neuron is updated on an equidistant
time grid, and the emission and absorption times of spikes are restricted to
the grid (see section 3). The temporal spacing of the grid is called compu-
tation time step h. Consider a network of 105 neurons as described above.
At a computation time step of 0.1 ms, a time-driven algorithm carries out
109 neuron updates per second, the same number as required for the event-
driven algorithm. In this situation, the time-driven scheme is necessarily
faster than the event-driven scheme because the costs of the actual updates
are the same and there is no overhead caused by the scheduling of events.
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However, in this letter, we criticize this view and argue that in order to arrive
at a relevant measure of efficiency, simulation time should be analyzed as
a function of the integration error rather than the update interval. Whether
a time-driven or event-driven scheme yields a better perfomance from this
perspective depends on the required accuracy of the simulation and the
network spike rate, and is not immediately apparent from considerations
of complexity.

In the time-driven framework, Rotter and Diesmann (1999) showed that
for a wide class of neuron models, the linearity of the subthreshold dy-
namics can be exploited to integrate the neuron state exactly from one
grid point to the next by performing a single matrix vector multiplication.
Here, the computation time step simultaneously determines the accuracy
with which incoming spikes influence the subthreshold dynamics and the
timescale at which threshold crossings can be detected. However, Hansel,
Mato, Meunier, and Neltner (1998) showed that forcing spikes onto the grid
can significantly distort the synchronization dynamics of certain networks.
Reducing the computation step ameliorates the problem only slowly, as the
integration error declines linearly with h (see section 8.4.1). The problem
was solved (Hansel et al., 1998; Shelley & Tao, 2001) by interpolating the
membrane potential between grid points to give a better approximation of
the time of threshold crossing and evaluating the effect of incoming spikes
on the neuronal state in continuous time.

In this work, we demonstrate that the techniques developed for the
exact integration of the subthreshold dynamics (Rotter & Diesmann, 1999)
and for the interpolation of spike times (Hansel et al., 1998; Shelley & Tao,
2001) can be successfully combined. By requiring that the minimal synaptic
propagation delay be at least as large as the computation time step, all events
can be queued at their target neurons rather than relying on a central event
queue to maintain causality in the network. This reduces the complexity
of the global scheduling algorithm—that is, deciding which neuron should
be updated, and how far—to the simple time-driven case, whereby each
neuron in turn is advanced in time by a fixed amount. Therefore, the global
overhead costs are no more than in a traditional discrete-time simulation,
and yet on the level of the individual neuron, spikes can be processed and
emitted in continuous time with the accuracy of an event-driven algorithm.
This approach represents a hybridization of traditional time-driven and
event-driven algorithms: the scheme is time driven on the global level to
advance the system time but event driven on the level of the individual
neurons.

The exact integration method is predicated on the linearity of the sub-
threshold dynamics. We show that this property can be further exploited,
as the order of incoming events is not relevant for calculating the neuron
state. This completely removes the need for storing and sorting individual
events, and therefore also for dynamic data structures, while maintaining
the high precision of the event-driven approach.
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We illustrate these ideas by comparing three implementations of the
same widely used integrate-and-fire neuron model. As in previous work,
the scaling behavior of the integration error is considered a function of
the computational resolution. However, in contrast to these works, we also
analyze the run time and memory consumption of a large neuronal net-
work model as a function of integration error, thus defining a measure of
efficiency that can be applied to any competing model implementations.
This analysis reveals that the novel scheme of embedding continuous-time
implementations in a discrete-time framework can in many cases result
in simulations that are both more accurate and faster than a given purely
discrete-time simulation. This is possible because the new scheme achieves
the same accuracy at larger computation time steps. Depending on the rate
of events to be processed by the neuron, the gain in simulation speed due
to an increased step size can more than compensate for the increased com-
plexity of processing continuous-time input events. The scheme presented
is well suited for distributed computing.

In section 2, we describe the neuron model used as an example in the
remainder of the article, and then we review the techniques for integrating
the dynamics of a neural network in discrete time steps in section 3. Sub-
sequently, in section 4, we present two implementations solving the single-
neuron dynamics between grid points but handling the incoming and emit-
ted spikes in continuous time. The performance of these implementations
with respect to integration error, run time, and memory requirements is
analyzed in section 5. We show that the choice of which implementation
should be used for a given problem depends on a trade-off between these
factors. The concepts of time-driven and event-driven simulation of large
neural networks are discussed in section 6 in the light of our findings.
The numerical techniques underlying the reported results are given in the
appendix.

The conceptual and algorithmic work described here is a module in our
long-term collaborative project to provide the technology for neural systems
simulations (Diesmann & Gewaltig, 2002).

Preliminary results have been presented in abstract form (Morrison,
Hake, Straube, Plesser, & Diesmann, 2005).

2 Example Neuron Model

Although the methods in this letter can be applied to any neuron model
reducible to a system of linear differential equations, for clarity, we com-
pare various implementations of one particular physical model: a current-
based integrate-and-fire neuron with postsynaptic currents represented as
α-functions. The dynamics of the membrane potential V is:

V̇ = − V
τm

+ 1
C

I,
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where τm is the membrane time constant, C is the capacitance of the mem-
brane, and I is the input current to the neuron. The current arises as a
superposition of the synaptic currents and any external current. The time
course of the synaptic current ι due to one incoming spike is

ι(t) = ι̂
e
τα

te−t/τα ,

where ι̂ is the peak value of the current and τα is the rise time. When
the membrane potential reaches a given threshold value �, the membrane
potential is clamped to zero for an absolute refractory period τr. The values
for these parameters used in this article are τm, 10 ms; C , 250 pF; �, 20 mV;
τr, 2 ms; ι̂, 103.4 pA; and τα , 0.1 ms.

3 Exact Integration of Subthreshold Dynamics in a Discrete Time
Simulation

The dynamics of the neuron model described in section 2 is linear and can
therefore be reformulated to give a particularly efficient implementation
for a discrete-time simulation (Rotter & Diesmann, 1999). We refer to this
traditional, discrete-time approach as the grid-constrained implementation.
Making the substitutions

y1 = d
dt

ι + 1
τα

ι

y2 = ι

y3 = V,

where yi is the ith component of the state vector y, we arrive at the following
system of linear equations:

ẏ = Ay =




− 1
τα

0 0

1 − 1
τα

0

0 1
C − 1

τm


 y, y(0) =




ι̂ e
τα

0

0


 ,

where y(0) is the initial condition for a postsynaptic potential originating
at time t = 0. The exact solution of this system is given by y(t) = P(t)y(0),
where P(t) = eAt denotes the matrix exponential of At, which is an exact
mathematical expression (see, e.g., Golub & van Loan, 1996). For a fixed time
step h, the state of the system can be propagated from one grid position
to the next by yt+h = P(h)yt . This is an efficient method because P(h) is
constant and has to be calculated only once at the beginning of a simulation.
Moreover, P(h) can be obtained in closed form (Diesmann, Gewaltig, Rotter,
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& Aertsen, 2001), for example, using symbolic algebra software such as
Maple (Heck, 2003) or Mathematica (Wolfram, 2003), and can therefore be
evaluated by simple expressions in the implementation language (see also
section A.3). The complete update for the neuron state may be written as

yt+h = P(h)yt + xt+h, (3.1)

assuming incoming spikes are constrained to the grid, as the linearity of the
system permits the initial conditions for all spikes arriving at a given grid
point to be lumped together into one term, xt+h

xt+h =




e
τα

0

0


 ∑

k∈St+h

ι̂k . (3.2)

Here St+h is the set of indices k ∈ 1, . . . , K of synapses that deliver a spike to
the neuron at time t + h, and ι̂k represents the “weight” of synapse k. Note
that the ι̂k may be arbitrarily signed and may also vary over the course
of the simulation. The new neuron state yt+h is the exact solution to the
subthreshold neural dynamics at time t + h, including all events that arrive
at time t + h. This assumes that the neuron does not itself produce a spike
in the interval (t, t + h].

If the membrane potential y3
t+h exceeds the threshold value �, the neuron

communicates a spike event to the network with a time stamp of t + h;
the membrane potential is subsequently clamped to 0 in the interval [t +
h, t + h + τr] (see Figure 1A). The earliest grid point at which a neuron
could produce its next spike is therefore t + 2h + τr. Note that for a grid-
constrained implementation, τr must be an integer multiple of h, because
the membrane potential is evaluated only at grid points, and we define it
to be nonzero.

3.1 Computational Requirements. In order to preserve causality, it is
necessary that there is a minimal synaptic delay of h. Otherwise, if a neuron
spiked at time t + h and its synapses had a propagation delay of 0, then this
event would seem to arrive at some of its targets at t + h and at some of
them at t + 2h, depending on the order in which the neurons are updated. In
practice, simulations are generally performed with synaptic delays that are
greater than the time step h, and so some technique must be used to store
events that have already been produced by a neuron but are not due to arrive
at their targets for several time steps. In a grid-constrained simulation, only
delays that are an integer multiple of h can be considered because incoming
spikes can be handled only at grid points. Consequently, pending events
can be stored in a data structure analogous to a looped tape device (see
Morrison, Mehring, et al., 2005). If a neuron emits a spike at time t that has a
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t

 = t  − t

t t+h t+2h

t t+h t+2h time

time

V

V

A

B

Θ

Θ

Θ

0

0

rΘδ τ

Figure 1: Spike generation and refractory periods for a grid-constrained (A) and
a continuous-time implementation (B). The spike threshold � is indicated by
the dashed horizontal line. The solid black curve shows the membrane potential
time course for a neuron subject to a suprathreshold constant input current
leading to a threshold crossing in the interval (t, t + h]. The gray vertical lines
indicate the discrete time grid with spacing h. The refractory period τr in this
example is set to its minimal value h. Filled circles denote observable values
of the membrane potential; unfilled circles denote supporting points that are
not observable. (A) In the grid-constrained implementation, the spike is emitted
at t + h. During the refractory period τr , the membrane potential is clamped to
zero. (B) In the continuous-time implementation, the threshold crossing is found
by interpolation (here linear: black dashed line) at time t�. The spike is emitted
with the time stamp t + h and with an offset with respect to t of δ = t� − t. The
neuron is refractory from t� until t� + τr , during which period the membrane
potential is clamped to zero. At grid point t + 2h, a finite membrane potential
can be observed.



54 A. Morrison, S. Straube, H. Plesser, and M. Diesmann

delay of d , the simulation algorithm waits until all neurons have completed
their updates for the integration step (t − h, t] and then delivers the event
to its target(s). The event is placed in the tape device of the target neuron
d/h segments on from the current reading position. It will then become
visible to the target neuron at the grid point t + d , when the neuron is
performing the update for the integration step (t + d − h, t + d]. Recalling
that the initial conditions for all events arriving at a given time may be
lumped together (see equation 3.2) and that two of the three components
of the initial conditions vector are zero, the segments of the looped taped
device can be very simple. Each segment contains just one value, which is
incremented by the weight of every spike event delivered there. In other
words, when the neuron performs the integration step (t, t + h], the segment
visible to the reading head contains the first component of xt+h up to the
scaling factor of e

τα
.

In terms of memory, the looped tape device needs as many segments as
computation steps are required to cover the maximum synaptic delay, plus
an additional segment to represent the events arriving at t + h. Therefore,
performing a given simulation with a smaller time step will require more
memory. The model described in section 2 has only a single synaptic dy-
namics and so requires only one tape device; models using multiple types
of synaptic dynamics can be implemented in this framework by providing
them with the corresponding number of tape devices.

4 Continuous-Time Implementation of Exact Integration

4.1 Canonical Implementation. The most obvious way to reconcile
exact integration and precise spike timing within a discrete-time simulation
is to store the precise times of incoming events. In order to represent this
information, an offset must be assigned to each spike event in addition to
the time stamp. This offset is measured from the beginning of the interval
in which the spike was produced: a spike generated at time t + δ receives a
time stamp of t + h and an offset of δ (see Figure 1B). Given a sorted list of
event offsets {δ1, δ2, · · · , δn} with δi ≤ h, which become visible to a neuron
in the step (t, t + h], exact integration of the subthreshold dynamics can be
performed from the beginning of the time step to the beginning of the list:

yt+δ1 = P(δ1)yt + xδ1;

then along the list:

yt+δ2 = P(δ2 − δ1)yt+δ1 + xδ2

...

yt+δn = P(δn − δn−1)yt+δn−1 + xδn;
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and finally from the end of the list to the end of the time step:

yt+h = P(h − δn)yt+δn .

The final term yt+h is the exact solution for the neuron dynamics at time
t + h. This sequence is illustrated in Figure 2B. This is assuming that
the neuron does not produce a spike or emerge from its refractory pe-
riod during this interval. These special cases are described in more detail
below.

4.1.1 Spike Generation. In the grid-constrained implementation, the neu-
ron state is inspected at the end of each time step to see if it meets its spiking
criteria. In the case of the neuron model described in section 3, the criterion
is y3 ≥ �, where � is the threshold. In this implementation, the neuron
state can be inspected after every step of the process described in sec-
tion 4.1. If y3

t+δi
< � and y3

t+δi+1
≥ �, then the membrane potential of the

neuron reached threshold between t + δi and t + δi+1. As the dynamics of
this model is not invertible, the time t� of this threshold passing can be
determined only by interpolating the membrane potential in the interval
(t + δi , t + δi+1]. For this article, linear, quadratic, and cubic interpolation
schemes were investigated.

After the threshold crossing, the neuron is refractory for the duration of
its refractory period τr. The membrane potential y3 is set to zero and need
not be calculated during this period, although the other components of the
neuron state continue to be updated as in section 4.1.

At the end of the time interval, an event is dispatched with a discrete-time
stamp of t + h and an offset of δ = t� − t (see Figure 1B).

4.1.2 Emerging from the Refractory Period. The neuron emerges from
its refractory period in the time step defined by t < t� + τr ≤ t + h (see
Figure 1B). In contrast to the grid-constrained implementation, τr does not
have to be an integer multiple of h. For a continuous time τr, a grid position
t can always be found such that t� + τr comes within (t, t + h]. However,
the implementation is simpler when τr is a nonzero integer multiple of h.
To calculate the neuron state at time t + h exactly, the interval is divided
into two subintervals: (t, t� + τr] and (t� + τr, t + h]. In the first period, the
neuron is still refractory, so when performing the exact integration along the
incoming events as in section 4.1, y3 is not calculated and remains at zero.
At the end of this period, the neuron state yt�+τr is the exact solution for
the dynamics at the end of the refractory period. In the second period, the
neuron is no longer refractory, and so the exact integration can be performed
as usual (including the calculation of y3). The neuron state yt+h is therefore
an exact solution to the neuron dynamics at time t + h.
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A

B

C

t+ht t+2h

Figure 2: Handling of incoming spikes in the grid-constrained (A), the canon-
ical (B), and the prescient (C) implementations. In each panel, the solid curve
represents the excursion of the membrane potential in response to two incoming
spikes (gray vertical lines). Filled circles denote observable values of the mem-
brane potential; unfilled circles denote supporting points that are not observable.
The gray horizontal arrows beneath each panel indicate the propagation steps
performed during the time step (t, t + h]. Dashed arrows in A indicate that in
the grid-constrained implementation, input spikes are effectively shifted to the
next point on the grid. The observable membrane potentials following spike
impact are identical and exact in B and C but differ from those in A.
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4.1.3 Computational Requirements. As in the grid-constrained implemen-
tation, a minimum spike propagation delay of h is necessary in order to
ensure that all events due at the neuron between t and t + h have arrived
by the time the neuron performs its update for that interval. The simple
looped event buffer described in section 3.1 must be extended to store the
weights and offsets for incoming events separately. As the number of events
arriving in an interval cannot be known ahead of time, this structure must
be capable of dynamic memory allocation, which reduces its cache effec-
tiveness. However, information about the minimum propagation delay in
the network can be utilized to streamline the data structure so that its size
does not depend on h, which compensates to some extent for the use of
dynamic memory. Finally, as the events may arrive in any order, the buffer
must also be capable of sorting the events with respect to increasing offset,
which for a general-purpose sorting algorithm has complexity O(n log n).
An alternative representation of the timing data is a priority queue; in prac-
tice, this was not quite as efficient as the looped tape device. In contrast
to the grid-constrained implementation, delays can now be represented in
continuous time. A spike arrival time t + δ + d , where t + δ is a continu-
ous spike generation time and d is a continuous time delay, can always
be decomposed into a discrete grid point t + d ′ and a continuous offset δ′.
However, for notational and implementational convenience (see section 6),
we assume d to be a nonzero integer multiple of h.

4.2 Prescient Implementation. In the implementation described in sec-
tion 4.1, the neuron state at the end of a time step is calculated by integrat-
ing along a sorted list of events. However, as the subthreshold dynamics
is linear, it is not dependent on the order of events. In this section, an
implementation is presented that exploits this fact to reduce the compu-
tational complexity and dynamic memory requirements of the canonical
implementation.

4.2.1 Receiving an Event. Consider a spike event generated during the
step (t − h, t] with offset δ and transmitted with delay d . This spike will
be processed during the update step (t + d − h, t + d], its effect being ob-
servable for the first time at t + d . Since the correct spike arrival time is
t + d − h + δ, when the algorithm delivers the spike to the neuron we evolve
the effect of the spike input from the arrival time to the end of the interval
at t + d using

ỹt+d = P(h − δ)x.

Therefore, instead of storing the entire event as for the canonical implemen-
tation, the three components of its effect on the neuron state can be stored in
an event buffer at the position d instead. Due to the linearity of the system,
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these components can be summed for all events due to arrive at the neuron
in a given time step, regardless of the order in which the algorithm delivers
them to the neuron or the order in which they are to become visible to the
neuron. As we exploit the fact that the effect of an event on the neuron can
be calculated before the event becomes visible to the neuron, we call this
the prescient implementation.

4.2.2 Calculating the Subthreshold Dynamics. At the beginning of each
time interval (t, t + h], the total effect of all events arriving within that step
on the three components of the neuron state at time t + h is already stored
in the event buffer. Calculating the neuron state at the end of the time step
is therefore simple:

yt+h = P(h)yt + ỹt+h .

The new neuron state yt+h is the exact solution to the neuron dynamics at
time t + h, including all events that arrived within the step (t, t + h]. This is
depicted in Figure 2C. As with the canonical implementation, there are two
special cases that need to be treated with more care: a time step in which a
spike is generated and one in which the neuron emerges from its refractory
period.

4.2.3 Spike Generation. The process that generates a spike is very similar
to that for the canonical implementation described in section 4.1.1. In this
case, as the timing of the incoming events is no longer known, the neuron
state can be inspected only at the end of the time step rather than at each
incoming event, and so the length of the interpolation interval is h rather
than the interspike interval of incoming events.

4.2.4 Emerging from the Refractory Period. As for the canonical imple-
mentation, the time step in which the neuron emerges from its refractory
period is divided into two subintervals: (t, t� + τr] and (t� + τr, t + h]. Set-
ting tem = t� + τr − t, the neuron state at the end of the refractory period
can be calculated as follows:

yt+tem = P(tem)yt

y3
t+tem

← 0.

Having emerged from the refractory period, the membrane potential is no
longer clamped to zero and can develop normally during the remainder of
the time step (see Figure 1B):

yt+h = P(h − tem)yt+tem + ỹt+h .
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However, this overestimates the effect of the events arriving in the time
interval (t, t + h] on the membrane potential. The summation of the compo-
nents of these events was predicated on the assumption of linear dynamics,
but as the membrane potential is clamped to zero until t + tem, this assump-
tion does not hold. Any events arriving at the neuron before its emergence
from its refractory period should have no effect on its membrane potential
before this point, yet adding the full value of the third component of ỹt+h

assumes that they do. As a corrective measure, the effect of the new events
on the membrane potential can be considered to be linear within the small
interval (t, t + h], and the membrane potential can be adjusted accordingly:

y3
t+h ← y3

t+h − γ ỹ3
t+h,

with γ = tem/h.

4.2.5 Computational Requirements. As in the grid-constrained and canon-
ical implementations, a minimum spike propagation delay of h is required
to preserve causality. The looped-tape device described in section 3.1 needs
to be able to store the three components of the neuron state rather than just
the weight of the incoming events. Alternatively, three event buffers can be
used, capable of storing one component each. Unlike the buffer devices for
the canonical implementation, they need to store only one value per time
step rather than one for each incoming spike, so there is no time overhead
for sorting the values. Moreover, they do not require dynamic memory
allocation and so are more cache effective.

5 Performance

In order to compare error scaling for the different implementations and
interpolation orders, a simple single-neuron simulation was chosen. As the
system is deterministic and nonchaotic, reducing the computation time step
h causes the simulation results to converge to the exact solution, so error
measures can be well defined. To investigate the costs incurred by simulat-
ing at finer resolutions or using computationally more expensive off-grid
neuron implementations, a network simulation was chosen. This is fairer
than a single-neuron simulation, as the run-time penalties of applications
requiring more memory will come into play only if the application is large
enough not to fit easily into the processor’s cache memory. Furthermore, it is
only when performing network simulations that the bite of long simulation
times per neuron is really felt.

5.1 Single-Neuron Simulations. Each experiment consisted of 40 trials
of 500 ms each, during which a neuron of the type described in section 2
was stimulated with a constant excitatory current of 412 pA and unique
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Figure 3: Scaling of error in membrane potential as a function of the compu-
tational resolution in double logarithmic representation. (A) Canonical imple-
mentation. (B) Prescient implementation. No interpolation, circles; linear in-
terpolation, plus signs; quadratic interpolation, diamonds; cubic interpolation,
multiplication signs. In both cases, the triangles show the behavior of the grid-
constrained implementation, and the gray lines indicate the slopes expected for
scaling of orders first to fourth with an arbitrary intercept of the vertical axis.

realizations of an excitatory Poissonian spike train of 1.3 × 104 Hz and an
inhibitory Poissonian spike train of 3 × 103 Hz. The spike times of the Pois-
sonian input trains were represented in continuous time. Parameters are as
in section 2, but the peak value of the current resulting from an inhibitory
spike was a factor of 6.25 greater than that of an excitatory spike to ensure
a balance between excitation and inhibition. The output firing rate was
12.7 Hz. The experiment was repeated for each implementation with each
interpolation order over a wide range of computational resolutions. As the
membrane potential and spike times cannot be calculated analytically for
this protocol, the canonical implementation with cubic interpolation at the
finest resolution (2−13 ms ≈ 0.12 µs) was defined to be the reference simu-
lation for each realization of the input spike train. As a measure of the error
in calculating the membrane potential, the deviation of the actual mem-
brane potential from the reference membrane potential was sampled every
millisecond for all the trials.

In Figure 3, the median of these deviations is plotted as a function of the
computational resolution in double logarithmic representation. In both the
canonical implementation (see Figure 3A) and the prescient implementation
(see Figure 3B), the same scaling behavior can be seen: for an interpolation
order of n, the error in membrane potential scales with order n + 1 (see
section A.4). The error has a lower bound at 10−14, which can be seen for
very fine resolutions using cubic interpolation. This represents the greatest
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Figure 4: Scaling of error in spike times as a function of the computational res-
olution. (A) Canonical implementation. (B) Prescient implementation. Symbols
and lines as in Figure 3.

numerical precision possible for this physical quantity using the standard
representation of floating-point numbers (see section A.1). Interestingly, the
error for the canonical implementation also saturates at coarse resolutions.
This is because interpolation is performed between incoming events rather
than across the whole time step, as in the case of the prescient implemen-
tation. Consequently, the effective computational resolution cannot be any
coarser than the average interspike interval of the incoming spike train (in
this case, 1/16 ms), and this determines the maximum error of the canonical
implementation. Note that the error of the grid-constrained implementation
scales in the same way as that of the canonical and prescient implementa-
tions with no interpolation. However, due to the fact that incoming spikes
are forced to the grid, the absolute error is greater for this implementation.

The accuracy of a simulation is not determined by the membrane po-
tential alone; the precision of spike times is of at least as much relevance.
The median of the differences between the actual and the reference spike
times is shown in Figure 4. As with the error in membrane potential,
using an interpolation order of n results in a scaling of order n + 1, and
the error has a lower bound that is exhibited at very fine resolution when
using cubic interpolation. Furthermore, a similar upper bound on the error
is observed for the canonical implementation at coarse resolutions. How-
ever, in this case, the grid-constrained implementation exhibits not only
the same scaling, but a similar absolute error to the continuous-time imple-
mentations with no interpolation. Recalling that all the simulations receive
identical continuous-time Poisson spike trains, the only difference remain-
ing between the grid-constrained implementation and the continuous-time
implementations without interpolation is that the former ignores the offset
of the incoming spikes and treats them as if they were produced on the



62 A. Morrison, S. Straube, H. Plesser, and M. Diesmann

grid, whereas the latter process the incoming spikes precisely. This reveals
that handling incoming spikes precisely confers no real advantage if out-
going spikes are generated without interpolation and thereby forced to the
grid. One might therefore conclude that the precise handling of incoming
spikes is unnecessary and that the single-neuron integration error could be
significantly improved just by performing an appropriate interpolation to
generate spikes, while treating incoming spikes as if they were produced
on the grid. In fact, this is not the case. If incoming spikes are treated as if on
the grid, the error in the membrane potential decreases only linearly with h,
thus limiting the accuracy of higher-order methods in determining thresh-
old crossings. This is corroborated by simulations (data not shown). Sub-
stantial improvement in the accuracy of single-neuron simulations requires
both techniques: precise handling of incoming spikes and interpolation of
outgoing spikes.

5.2 Network Simulations. In order to determine the efficiency of the
various implementations, a balanced recurrent network was adapted from
Brunel (2000). The network contained 10,240 excitatory and 2560 inhibitory
neurons and had a connection probability of 0.1, resulting in a total of 15.6 ×
106 synapses. The inhibitory synapses were a factor of 6.25 stronger than the
excitatory synapses, and each neuron received a constant excitatory current
of 412 pA as its sole external input. Membrane potentials were initialized
to values chosen from a uniform random distribution over [−�/2, 0.99�].
In this configuration, the network fires with approximately 12.7 Hz in the
asynchronous irregular regime, which recreates the input statistics used
in the single-neuron simulations. The synaptic delay was 1 ms, and the
network was simulated for 1 biological second.

The simulation time and memory requirements for the network simu-
lation described above are shown in Figure 5. For the simulation time (see
Figure 5A), it can be seen that at coarse resolutions, the grid-constrained
implementation is significantly faster than the prescient implementation,
which in turn is faster than the canonical implementation. This is due to
the fact that the cost of processing spikes is essentially independent of the
computational resolution and manifests as an implementation-dependent
constant contribution to the simulation time, which is particularly domi-
nant at coarse resolutions. The difference in speed between the canonical
and prescient implementations results from the use of dynamic as opposed
to static data structures, and to a lesser extent from the cost of sorting in-
coming spikes in the canonical implementation. As the computation time
step decreases, the simulation times converge, because the cost of updating
the neuron dynamics in the absence of events, which is the same for all
implementations, is inversely proportional to the resolution and so mani-
fests as a scaling with exponent −1 at small computation time steps (see
Figure 5A). It is clear that in general, at the same computation time step, the
continuous-time implementations must be slower than the grid-constrained
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Figure 5: Simulation time (A) and memory requirements (B) for a network sim-
ulation as functions of computational resolution in double logarithmic represen-
tation. Triangles, grid-constrained neuron; plus signs, canonical implementation
with cubic interpolation; circles, prescient implementation with cubic interpola-
tion. Other interpolation orders for the canonical and the prescient implemen-
tations result in practically identical curves and are therefore not shown. For
details of the simulation, see the text.

implementation, as the former perform a propagation for every incoming
spike and the latter does not. The increased costs concomitant with higher
interpolation orders proved to be negligible in a network simulation.

An increase in memory requirements can be observed for all implementa-
tions (see Figure 5B) as the resolutions become finer. Although all implemen-
tations require much the same amount of memory at coarser resolutions, for
finer resolutions, the canonical implementation requires the least memory,
followed by the grid-constrained implementation, and the prescient imple-
mentation requires the most. It is clear that for a wide range of resolutions,
the memory required by the rest of the network, specifically the synapses,
dominates the total memory requirements (Morrison, Mehring, et al., 2005).
As the resolution becomes finer, the memory required for the input buffers
for the neurons plays a greater role. The spike buffer for the canonical
implementation is independent of the resolution (see section 4.1.3), and
so it might seem that it should not require more memory at finer reso-
lution. However, all implementations tested here also have a buffer for a
piece-wise constant input current. In addition to this, the grid-constrained
implementation has one buffer for the weights of incoming spikes, and
the prescient implementation has three buffers—one for each component
of the state vector. All of these buffers require memory in inverse propor-
tion to the resolution, thus explaining the ordering of the curves. Gener-
ally a smaller application is more cache effective than a larger one, and
this may explain why the canonical implementation exhibits slightly lower
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simulation times than the other implementations at very fine resolutions
(see Figure 5A).

5.3 Conjunction of Integration Error and Run-Time Costs. The consid-
erations in section 5.2 of how the simulation time and memory requirements
increase with finer resolutions are of limited practical relevance to a scien-
tist with a particular problem to investigate. More interesting in this case is
how much precision bang you get for your simulation time buck. Unlike the
single neuron, however, the network described above is a chaotic system
(Brunel, 2000). Any deviation at all between simulations will lead, in a short
time, to totally different results on the microscopic level, such as the evoked
spike patterns. Such a deviation can even be caused by differences in the
tiny round-off errors that occur if floating-point numbers are summed in a
different order. Because of this, these simulations do not converge on the
microscopic level as the single-neuron simulations do, and for that reason
the so-called accuracy of a simulation cannot be taken at face value.

We therefore relate the cost of network simulations to the accuracy of
single-neuron simulations with comparable input statistics. In Figure 6, the
simulation time and memory requirements data from Figure 5 are com-
bined with the accuracy of the corresponding single-neuron simulations
shown in Figure 4, thus eliminating the computational resolution as a pa-
rameter. Figure 6A shows the simulation time as a function of spike time
error for the three implementations. This graph can be read in two direc-
tions: horizontally and vertically. By reading the graph horizontally, we can
determine which implementation will give the best accuracy for a given
affordable simulation time. Reading the graph vertically allows us to deter-
mine which implementation will result in the shortest simulation time for a
given acceptable accuracy. Concentrating on the latter interpretation, it can
be seen from the intersection of the lines corresponding to the prescient-
and grid-based implementations (vertical dashed line in Figure 5A) that
if an error greater than 2.3 × 10−2 ms is acceptable, the grid-constrained
implementation is faster. For better accuracy than this, the prescient im-
plementation is more effective. If an appropriate time step is chosen, the
prescient implementation can simulate more accurately and more quickly
than a given grid-constrained simulation in this regime. Only for very high
accuracy can a lower simulation time be achieved using the canonical im-
plementation.

Similarly, Figure 6B, which shows the memory requirements as a function
of spike-time error in double logarithmic representation, can be read in both
directions. This shows qualitatively the same relationship as in Figure 6A,
but the point at which one would switch from the prescient implementation
to the canonical implementation in order to conserve memory occurs for
larger errors. The flatness of the curves for the continuous-time implemen-
tations shows that it is possible to increase the accuracy of a simulation
considerably without having to worry about the memory requirements.
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Figure 6: Analysis of simulation time and memory requirements for a network
simulation as functions of spike-time error for the single-neuron simulation and
input spike rate. (A) Simulation time as a function of spike-time error in dou-
ble logarithmic representation. Triangles, grid-constrained neuron; plus signs,
canonical implementation with cubic interpolation; circles, prescient implemen-
tation with cubic interpolation. Data combined from Figure 4 and Figure 5. For
errors smaller than 2.3 × 10−2 ms (vertical dashed line), a continuous-time im-
plementation with an appropriately chosen computation step size gives better
performance. (B) Memory consumption as a function of spike-time error in
double logarithmic representation. Symbols as in A. (C) Error in spike time for
which the prescient and grid-constrained implementations require the same
simulation time (for different appropriate choices of h) as a function of input
spike rate. The unfilled circle indicates the equivalence error for a network rate
of 12.7 Hz (input rate 16 kHz), that is, the intersection marked by the vertical
dashed line in A. The gray line is a linear fit to the data (slope −0.95). (D) Sim-
ulation time as a function of input spike rate for h = 0.125 ms, symbols as in A.
The gray lines are linear fits to the data (slopes 1.3, 0.8 and 0.3 s per kHz from
top to bottom).
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In general, the point at which the prescient implementation at an ap-
propriate computational resolution can produce a faster and more accurate
simulation than a grid-constrained simulation will depend on the rate of
events a neuron has to handle. To investigate this relationship, the network
described in section 5.2 was simulated with different input currents and
inhibitory synapse strengths to generate a range of different firing rates
in the asynchronous irregular regime. The single-neuron integration error
at which the prescient- and the grid-constrained implementations require
the same simulation time is shown in Figure 6C as a function of the input
spike rate. This equivalence error depends linearly on the input spike rate,
demonstrating that in the parameter space of useful accuracies and real-
istic input rates, there is a wide regime where the prescient is faster than
the grid-constrained implementation. Underlying the benign nature of the
comparative effectiveness analyzed in Figure 6C is the dependence of sim-
ulation time on the rate of events. For all implementations, the simulation
time increases practically linearly with the input spike rate (see Figure 6D),
albeit with different slopes.

5.4 Artificial Synchrony. The previous section has shown that in
many situations, continuous-time implementations achieve a desired
single-neuron integration error more effectively than the grid-constrained
implementation. However, continuous-time implementations have an ad-
vantage compared to the grid-constrained implementation beyond the
single-neuron integration error. In a network simulation carried out with
the grid-constrained implementation, the spikes of all neurons are aligned
to the temporal grid defined by the computation time step. This causes
artificial synchronization between neurons that may distort measures of
synchronization and correlation on the network level. To demonstrate this
effect, Hansel et al. (1998) investigated a small network of N integrate-
and-fire neurons with excitatory all-to-all coupling. Here, we extend their
analysis to the three implementations under study and provide a compar-
ison of single-neuron and network-level integration error. In contrast to
their study, our network is constructed from the model neuron introduced
in section 2. The time constant of the synaptic current τα is adjusted to the
rise time of the synaptic current in the original model, which was described
by a β-function. The synaptic delay d and the absolute refractory period τr

are set to the maximum computation time step h investigated in this section.
Note that this choice of d and τr means that these parameters can be repre-
sented at all computational resolutions, thus ensuring that all simulations
using the grid-constrained implementation are solving the same dynamical
system.

Figure 7A illustrates the synchrony in the network as a function
of synaptic strength. Following Hansel et al. (1998), synchrony is de-
fined as the variance of the population-averaged membrane potential
normalized by the population-averaged variance of the membrane
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Figure 7: Synchronization error in a network simulation. (A) Network syn-
chrony (see equation 3.3) as a function of synaptic strength in a fully con-
nected network of N = 128 neurons (τα = (3/2) ln 3 ms, synaptic delay d = τr =
0.25 ms) with excitatory coupling (cf. Hansel et al., 1998). Neurons are driven
by a suprathreshold DC I0 = 575 pA, no further external input. The initial
membrane potential is Vi (0) = τm

C I0[1 − exp(−γ i−1
N

T
τm

)], where i ∈ 1, . . . , N is
the neuron index, T the period in the absence of coupling, and γ = 0.5 controls
the initial coherence. The simulation time is 10 s, and V is recorded in intervals
of 1 ms between 5 s and 10 s. Synaptic strength is expressed as the ampli-
tude of a postsynaptic current relative to the rheobase current I∞ = (C/τm)θ =
500 pA and multiplied by the number of neurons N. Other parameters as in
section 2. Canonical implementation as reference (h = 2−10 ms, gray curve) and
prescient implementation (h = 2−2 ms, circles), both with cubic interpolation;
grid-constrained implementation (h = 2−5 ms, triangles). (B) Synchronization
error as a function of the computation time step in double logarithmic represen-
tation: grid-constrained implementation, triangles; prescient implementation,
circles; canonical implementation, plus signs. (C) Synchronization error as a
function of the single-neuron integration error for the grid-constrained and the
prescient implementation, same representation as in B. The gray lines are linear
fits to the data.
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where 〈·〉i indicates averaging over the N neurons and 〈·〉t indicates av-
eraging over time. This is a measure of coherence in the limit of large N
with S = 1 for full synchronization and S = 0 for the asynchronous state.
The grid-constrained implementation exhibits a considerable error in syn-
chrony, which vanishes in approaching the asynchronous regime. The pre-
scient implementation accurately preserves network synchrony even with
a significantly larger computation time step.

The error in synchrony is quantified in Figure 7B as the root mean square
of the relative deviation of S with respect to the reference solution, estimated
over the range of synaptic strength investigated. Note that this includes the
asynchronous regime where errors are small in general. The prescient im-
plementation is easily an order of magnitude more accurate than the grid-
constrained implementation and is itself outperformed by the canonical
implementation. In addition, for the continuous-time implementations, the
error in synchrony drops more rapidly with decreasing computational time
step h than for the grid-constrained implementation. However, at the same
h, different integration methods exhibit a different integration error for the
single-neuron dynamics (see Figure 4). Therefore, to accentuate network
effects, continuous-time and grid-constrained implementations should be
compared at the same single-neuron integration error. To this end, we pro-
ceed as follows: the network spike rate is approximately 80 Hz, correspond-
ing to an input spike rate of some 10 kHz. In Figure 7C, the error in network
synchrony at a given computational time step h is plotted as a function of
the spike time error of a single neuron driven with an input spike rate of
approximately 10 kHz, simulated at the same h. For single-neuron errors of
10−2 ms and above, the grid-constrained implementation results in consid-
erable errors in network synchrony. Spike timing errors of 10−2 ms and be-
low are required for the grid-constrained and the prescient implementations
to achieve a synchronization error in the 1% range or better. Interestingly,
the grid-constrained implementation exhibits a larger synchronization error
than the prescient implementation for identical single-neuron integration
errors.

6 Discussion

We have shown that exact integration techniques are compatible with
continuous-time handling of spike events within a discrete-time simula-
tion. This combination of techniques achieves arbitrarily high accuracy (up
to machine precision) without incurring any extra management costs in the
global algorithm, such as a central event queue or looking ahead to see
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which neuron will fire next. This is particularly important for the study of
large networks with frequent events, as the cost of managing events can
become prohibitive (Mattia & Del Giudice, 2000; Reutimann, Giugliano, &
Fusi, 2003). We introduced a canonical implementation that illustrates the
principles of combining these techniques and a prescient implementation
that further exploits the linearity of the subthreshold dynamics. The lat-
ter implementation simplifies the neuron update algorithm and requires
only static data structures and no queuing, leading to a better time and
accuracy performance than the canonical implementation. We compared
interpolating polynomials of orders 1 to 3 and discovered that the in-
creased numerical complexity of the higher-order interpolations was not
reflected in the run time, which is dominated by other factors. Further-
more, it was shown that the highest-order interpolation performed stably.
This suggests that the highest-order interpolation should be used, as the
greater accuracy is obtained at negligible cost. We have investigated the
nature of the trade-off between accuracy and simulation time/memory and
demonstrated that for a large range of input spike rates, it is possible to
find a combination of continuous-time implementation and computation
time step that fulfills a given maximum error requirement both more accu-
rately and faster than a grid-constrained simulation. This measure of effi-
ciency is based on truly large-scale networks (12,800 neurons, 15.6 million
synapses).

The techniques described here have several possible extensions. First,
the canonical implementation places no constraints on the neuron model
used beyond the physically plausible requirement that the membrane po-
tential is thrice continuously differentiable. It may therefore be used to
implement essentially any kind of neuronal dynamics, including neurons
with conductance-based synapses. The prescient implementation further
requires that the neuron’s dynamics is linear; it may thus be used for a
wide range of model neurons with current-based synapses. The neuron
model we implemented does not have invertible dynamics, and so the de-
termination of its spike time necessarily involves approximation. For some
neuron models, it is possible to determine the precise spike time without
recourse to approximation, such as the Lapicque model (Tuckwell, 1988)
and its descendants (Mirollo & Strogatz, 1990). Such models can, of course,
also be implemented in this framework, but they would have only the same
precision as a classical event-based simulation if they were canonically im-
plemented (obviously without interpolation); a prescient implementation
would be able to represent the subthreshold dynamics exactly on the grid
but would entail the use of approximative methods to determine the spike-
times. Although we investigated polynomial interpolation, other methods
of spike time determination such as Newton’s method can be implemented
with no change to the conceptual framework.

Second, most constraints imposed in terms of the computational time
step h may be relaxed. As indicated in section 4.1.3, the restriction of
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delays to nonzero integer multiples of h can be relaxed to any floating-
point number ≥ h. When a neuron spikes, the offset of the spike could then
be combined on the fly with the delay to create an integer component and
a revised offset, thus allowing the spike to be delivered correctly by the
global discrete-time algorithm, and processed correctly by the continuous-
time neuron model. This relaxation would come at the memory cost of
having to store delays as floating-point numbers rather than integers and
the computational cost of having to perform the on-the-fly delay decom-
position. Furthermore, h is currently a parameter of the entire network, so
it is the same for all neurons in a given simulation. Given that the mini-
mum propagation delay already defines natural synchronization points to
preserve causality in the simulation, it would be possible to allow h to be
chosen individually for each neuron in the network, or even to use variable
time steps, while still maintaining consistency with the global discrete-time
algorithm.

Finally, the techniques are compatible with the distributed computing
techniques described in Morrison, Mehring, et al. (2005), requiring only that
the spike-time offsets are communicated in addition to the indices of the
spiking neurons. This increases the bulk but not the frequency of communi-
cation, as it is still sufficient to communicate in intervals determined by the
minimum propagation delay. A similar minimum delay principle is used
by Lytton and Hines (2005), again suggesting a convergence of time-driven
and event-driven approaches.

When investigating a particular system, it is worthwhile considering
what accuracy is necessary. For the networks described in section 5.2,
it would be pointless to simulate with a very small time step, as they
are chaotic. As long as the relevant macroscopic measures are preserved,
any time step is as good or as bad as any other. However, a good rule
of thumb is that it should be possible to discriminate spike times an or-
der of magnitude more accurately than the characteristic timescales of the
macroscopic phenomena to be observed, such as the temporal structure
of cross-correlations. Note that even if the characteristics of the system to
be investigated suggest that a grid-constrained implementation is optimal,
the availability of equivalent continuous-time implementations is still ad-
vantageous: should the suspicion arise that an observed phenomenon is an
artifact of the grid constraints, they can be used to test this without altering
any other part of the simulation. For much the same reason, it is very useful
to be able to modify the time step without having to adjust the rest of the
simulation.

The network studied in section 5.4 illustrates two more important points.
First, it demonstrates that exceedingly small single-neuron integration
errors may be required to accurately capture network synchronization.
Second, it is clear from Figure 7C that continuous-time implementations
are better at rendering macroscopic measures such as synchrony correctly:
in conditions where the grid-constrained and prescient implementations
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achieve the same single-neuron spike-timing error, the prescient imple-
mentation yields a significantly smaller error in network synchrony.

Accuracy cannot be improved on indefinitely: Figures 3 and 4 show
that the errors in both membrane potential and spike timing saturate at
about 10−14 mV and ms, respectively, for a time step of around 10−3 ms.
The saturation accuracy is close to the maximal precision of the standard
floating-point representation of the computer, and so 10−3 ms represents
a lower bound on the range of useful h. An upper bound is determined
by the physical properties of the system. First, h may not be larger than
the minimum propagation delay in the network or the refractory period
of the neurons. Second, using a large h increases the danger that a spike
is missed. This can occur if the true trajectory of the membrane potential
passes through the threshold within a step but is subthreshold again by the
end of the step. This is less of an issue for the canonical implementation, as
the check for a suprathreshold membrane potential is not just performed
at the end of every step but also at the arrival of every incoming event (see
section 4.1.1).

There is a common perception that event-driven algorithms are exact
and time-driven algorithms are approximate. However, both parts of this
perception are generally false. With respect to the first part, event-driven
algorithms are not by the nature of the algorithm more exact than time-
driven algorithms. It depends on the dynamics of the neuron model whether
an event-driven algorithm can find an exact solution, just as it does for time-
driven algorithms. For a restricted class of models, the spike times can be
calculated exactly through inversion of the dynamics. For other models,
approximate methods to determine the spike times need to be employed.
With respect to the second part, time-driven algorithms are not necessarily
approximate. A discrete-time algorithm does not imply that spike times
have to be constrained onto the grid, as shown by Hansel et al. (1998) and
Shelley and Tao (2001). Moreover, the subthreshold dynamics for a large
class of neuron models can be integrated exactly (Rotter & Diesmann, 1999).
Here we combine these insights to show that the degree of approximation in
a simulation is not determined by whether an event-driven or a time-driven
algorithm is used but by the dynamics of the neuron model.

A further question is whether the terms time-driven and event-driven
should even be used in this mutually exclusive way. In our algorithm,
neuron implementations treating incoming and outgoing spikes in contin-
uous time are seamlessly integrated into a global discrete-time algorithm.
Should this therefore be considered a time-driven or an event-driven algo-
rithm? We believe that this combination of techniques represents a hybrid
algorithm that is globally time driven but locally event driven. Similarly,
when designing a distributed simulation algorithm (Morrison, Mehring,
et al., 2005), it was shown that a time-driven neuron updating algorithm
can be successfully combined with event-driven synapse updating, again
suggesting that no dogmatic distinction between the two approaches need
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be made. However, although we were able to demonstrate the potential ad-
vantages of a hybrid algorithm, these findings do not in principle rule out
the existence of pure event-driven or time-driven algorithms with identical
universality and better performance for a given set of parameters than the
schemes presented here.

In closing, we express our hope that this work can help defuse the at
times heated debate between advocates of event-driven and time-driven
algorithms for the simulation of neuronal networks.

Appendix: Numerical Techniques

In this appendix, we present the numerical techniques employed to achieve
the reported accuracy.

A.1 Accuracy of Floating-Point Representation of Physical Quantities.
The double representation of floating-point numbers (Press, Teukolsky,
Vetterling, & Flannery, 1992) used by standard computer hardware lim-
its the accuracy with which physical quantities can be stored. The machine
precision ε is the smallest number for which the double representation of
1 + ε is different from the representation of 1. Consequently, the absolute
error σx of a quantity x is limited by the magnitude of x,

σx ≈ 2�log2 x� · ε.

In double representation, we have

ε = 2−52 ≈ 2.22 · 10−16.

Membrane potential values y are on the order of 20 mV; the lower limit of
the integration error in the membrane potential � is therefore on the order
of 5 · 10−15 mV. According to the rules of error propagation, the error in the
time of threshold crossing σ depends on the error in membrane potential as
σ = |1/ẏ|�. Typical values of the derivative |ẏ| of the membrane potential
are on the order of 1 mV per ms (single-neuron simulations, data not shown),
from which we obtain 5 · 10−15 ms as a lower bound for the error in spike
timing. Therefore, the observed integration errors at which the simulations
saturate are close to the limits imposed by the double representation for
both physical quantities.

A.2 Representation of Spike Times. We have seen in section A.1 that
the absolute error σx depends on the magnitude of the quantity x. As a
consequence, the error of spike times recorded in double representation
increases with simulation time. An additional error is introduced if the
computation time step h cannot be represented as a double (e.g., 0.1 ms).
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Therefore, we record spike times as a pair of two values {t + h, δ}. The first
one is an integral number in units of h represented as a long int specifying
the computation step in which the spike was emitted. The second one is the
offset of the spike time in units of ms represented as a double. If h is a power
of 2 in units of ms, both values can be represented as doubles without loss
of accuracy.

A.3 Evaluating the Update Equation. The implementation of the up-
date equation 3.1 in the target programming language requires attention
to numerical detail if utmost precision is desired. We were able to reduce
membrane potential errors in a nonspiking simulation from some 10−12 mV
to about 10−15 mV by careful rearrangement of terms. Although details may
depend significantly on processor architecture and compiler optimization
strategies, we will briefly recount the implementation we found optimal.

The matrix-vector multiplication in equation 3.1 describes updates of the
form

y ← (1 − e− h
τ )a + e− h

τ y,

where a and y are of order unity, while h 
 τ so that e− h
τ ≈ 1. For a time step

of h = 2
−12

ms and a time constant of τ = 10 ms, one has γ = 1 − e− h
τ ≈ 10−5.

The quantity γ can be computed accurately for small values of h/τ using
the function expm1(x) provided by current numeric libraries (C standard
library; see also Galassi et al., 2001). Using double resolution, γ will have
some 15 significant digits, spanning roughly from 10−5 to 10−20, and all
of these digits are nontrivial. The exponential e− h

τ may be computed to 15
significant digits using exp(x); the first five of these will be trivial nines,
though, leaving just 10 nontrivial digits, which furthermore span down to
only 10−15. We thus rewrite the equation above entirely in terms of γ ,

y ← γ a + (1 − γ )y,

and finally as

y ← γ (a − y) + y.

In our experience, this final form yields the most accurate results, as the full
precision of γ is retained as long as possible. Note that computing the 1 − γ

term above discards the five least significant digits of γ .
When several terms need to be added, they should be organized accord-

ing to their expected magnitude starting with the smallest components.

A.4 Polynomial Interpolation of the Membrane Potential. In order
to approximate the time of threshold crossing, the membrane potential y3

t
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known at grid points t with spacing h can be interpolated with polynomials
of different order. For the purpose of this section, we drop the index spec-
ifying the membrane potential as the third component of the state vector.
Without loss of generality, we assume that the threshold crossing occurs at
time δ∗ in the interval (0, h]. The corresponding values of the membrane
potential are denoted y0 < � and yh ≥ �, respectively. The threshold cross-
ings are found using the explicit formulas for the roots of polynomials of
order n = 1, 2, and 3 (Weisstein, 1999). In order to constrain the polynomi-
als, we exploit the fact that the derivative of the membrane potential can
be easily obtained from the state vector at both sides of the interval. For
the grid-constrained (n = 0) simulation and linear (n = 1) interpolation, we
demonstrate why the error in spike timing decreases with hn+1.

A.4.1 Grid-Constrained Simulation. In the variables defined above, the
approximate time of threshold crossing δ equals the computation time step
h; the spike is reported to occur at the right border of the interval (0, h].
Assuming the membrane potential y(t) to be exact, the error in membrane
potential � with respect to the value at the exact point of threshold crossing
is

� = yh − y(δ∗).

Let us require that y(t) is sufficiently often differentiable and that the
derivatives assume finite values. We can then express the membrane po-
tential as a Taylor expansion originating at the left border of the interval
y(t) = y0 + ẏ0t + O(t2). Considering terms up to first order, we obtain

� ={y0 + ẏ0h} − {y0 + ẏ0δ
∗}

= ẏ0(h − δ∗).

Hence, � reaches its maximum amplitude at δ∗ = 0, and we can write

|�| ≤ |ẏ0|h.

The error in spike timing is

σ = h − δ∗ = 1
ẏ0

�

and

|σ | ≤ h.
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A.4.2 Linear Interpolation. A polynomial of order 1 is naturally con-
strained by the values of the membrane potential (y0 and yh) at both ends of
the interval. With yt = at + b, the set of equations specifying the coefficients
of the polynomial (a and b) is

[
a
b

]
=

[
0 1
h 1

]−1 [
y0

yh

]

=
[−h−1 h−1

1 0

] [
y0

yh

]

=
[

(yh − y0)h−1

y0

]
.

Thus, in normalized form, we need to solve

0 = yh − y0

h
δ + (y0 − �) (A.1)

for δ to find the approximate time of threshold crossing. At the exact point
of threshold crossing δ∗, the error in membrane potential is

� =
{

yh − y0

h
δ∗ + y0

}
− y(δ∗). (A.2)

Let us require that y(t) is sufficiently often differentiable and that the
derivatives assume finite values. We can then express the membrane po-
tential as a Taylor expansion originating at the left border of the interval
y(t) = y0 + ẏ0t + 1

2 ÿ0t2 + O(t3). Considering terms up to second order, we
obtain

� =
{

ẏ0δ
∗ + 1

2
ÿ0hδ∗ + y0

}
−

{
y0 + ẏ0δ

∗ + 1
2

ÿ0δ
∗2

}

= 1
2

ÿ0(δ∗h − δ∗2
).

The time of threshold crossing is bounded by the interval (0, h]. Hence, �

reaches its maximum amplitude at δ∗ = 1
2 h, and we can write

|�| ≤ 1
8

|ÿ0| h2.
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Noting that y(δ∗) = � in equation A.2, we have

� = yh − y0

h
δ∗ + (y0 − �), (A.3)

and subtracting equation 4.1 from 4.3, we obtain

� = yh − y0

h
(δ∗ − δ).

Thus, the error in spike timing is

σ = δ∗ − δ = h
yh − y0

�.

With the help of the expansion

h
yh − y0

= 1
ẏ0

− ÿ0

2ẏ0
2 h,

we arrive at

|σ | ≤ 1
8

∣∣∣∣ ÿ0

ẏ0

∣∣∣∣ h2.

A.4.3 Quadratic Interpolation. Using a polynomial of order 2, we can
add an additional constraint to the interpolating function. We decide for
the derivative of the membrane potential at the left border of the interval
ẏ0. With yt = at2 + bt + c, we have


 a

b
c


 =


 0 0 1

h2 h 1
0 1 0




−1 
 y0

yh

ẏ0




=

−h−2 h−2 h−1

0 0 1
1 0 0





 y0

yh

ẏ0




=

 (yh − y0)h−2 − ẏ0h−1

ẏ0

y0


 .

Thus, in normalized form, we need to solve

0 = δ2 + ẏ0h2

yh − y0 − ẏ0h
δ + (y0 − �)h2

yh − y0 − ẏ0h
.
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The solution can be obtained by the quadratic formula. The GSL (Galassi
et al., 2001) implements an appropriate solver. Generally there are two real
solutions: the desired one inside the interval (0, h] and one outside.

A.4.4 Cubic Interpolation. A polynomial of order 3 enables us to con-
strain the interpolation further by the derivative of the membrane potential
at the right border of the interval ẏh . With yt = at3 + bt2 + ct + d , we have




a
b
c
d


 =




0 0 0 1
h3 h2 h 1
0 0 1 0

3h2 2h 1 0




−1 


y0

yh

ẏ0

ẏh




=




2h −2h−3 h−2 h−2

−3h−2 3h−2 −2h−1 −h−1

0 0 1 0
1 0 0 0







y0

yh

ẏ0

ẏh




=




2(y0 − yh)h−3 + (ẏ0 + ẏh)h−2

3(yh − y0)h−2 − (2ẏ0 + ẏh)h−1

ẏ0

y0


 .

Thus, in normalized form, we need to solve

0 = δ3 + 3(yh − y0)h − (2ẏ0 + ẏh)h2

2(y0 − yh) + (ẏ0 + ẏh)h
δ2

+ ẏ0h3

2(y0 − yh) + (ẏ0 + ẏh)h
δ + (y0 − �)h3

2(y0 − yh) + (ẏ0 + ẏh)h
.

The solution can be found by the cubic formula. There is at least one real
solution in the interval (0, h]. It is convenient to chose a substitution that
avoids the intermediate occurrence of complex quantities (e.g., Weisstein,
1999). The GSL (Galassi et al., 2001) implements an appropriate solver. If
the interval contains more than one solution, the time of threshold crossing
is defined by the left-most root.
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