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Kurzfassung

Signalverarbeitung in Neuronen

unter dem Einfluß von Rauschen

Das menschliche Gehirn ist das faszinierendste Rätsel der Naturwissenschaften.
Mit einer Leistungsaufnahme von nur 12 Watt (Sarpeshkar 1998) ermöglicht
uns dieses Organ, uns in unserer Umgebung zu orientieren, mit anderen Men-
schen zu kommunizieren und schließlich uns selbst als Denkende zu reflektie-
ren. Auch die glänzendsten Erfolge der künstlichen Intelligenz, wie der Sieg des
Schachcomputers Deep Blue über Weltmeister Garri Kasparow, verblassen vor
dieser Leistung der Natur. Diese hat nun in Jahrmillionen steter Evolution mit
unserem Gehirn ein Signalverarbeitungsorgan geschaffen, das sich verblüffend
von klassischen Lösungen der Ingenieurkunst unterscheidet. So besteht das
Gehirn aus einer ungeheueren Zahl scheinbar unzuverlässiger Nervenzellen,
die in wunderbarer Weise zusammenwirken. Die aus der stochastischen Natur
des Gehirns erwachsende, auf den ersten Blick hochgradig irreguläre Aktivität
dieser Neurone hat Forscherinnen und Forscher immer wieder vor Rätsel ge-
stellt.

Erst in jüngerer Zeit hat sich die Erkenntnis durchgesetzt, daß statistische
Einflüsse, oft Rauschen genannt, die Verarbeitung von Signalen nicht not-
wendig behindern, sondern sogar unterstützen können. Dieser Effekt ist als
stochastische Resonanz bekannt geworden (Benzi et al. 1981). Es liegt nahe,
daß die Evolution Wege gefunden hat, dieses Phänomen zur Optimierung der
Informationsverarbeitung bei minimalem Energiebedarf auszunutzen (Longtin
et al. 1991; Laughlin et al. 1998). Die Informationsverarbeitung im Nervensy-
stem scheint nun auf einem sorgfältig abgestimmten Wechselspiel von analoger
Signalverarbeitung und digitaler Signalübertragung zu beruhen (Sarpeshkar
1998). Daher kommt dem Pulsgenerator des Neurons, der Schwankungen des
über die Zellmembran des Neurons abfallenden Potentials als Pulsfolgen ko-
diert und an andere Neurone weiterleitet, eine besondere Bedeutung zu. Er
ist gleichsam der Analog-Digital-Wandler der Zelle. Diese Dissertation un-
tersucht, ob die Kodierung periodischer Signale im Pulsgenerator durch das
ohnehin im Nervensystem vorhandene Rauschen verbessert wird, ob also sto-
chastische Resonanz auftritt.
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Die Untersuchung wird am Beispiel des pulserzeugenden Integratorneurons
mit Leckstrom durchgeführt (leaky integrate-and-fire neuron), welches sich
durch drei wesentliche Eigenschaften auszeichnet: es reproduziert experimen-
telle Befunde hinreichend gut (siehe Kapitel 5.2), ist der mathematischen Ana-
lyse zugänglich und beschreibt die Erzeugung von Pulsfolgen und nicht etwa
nur die zeitliche Änderung von Pulsraten. Letzteres ist von Bedeutung, da ei-
ne wachsende Zahl experimenteller Arbeiten nahelegt, daß die präzise zeitliche
Struktur der Pulsfolgen ein wesentlicher Bestandteil der neuronalen Kodierung
ist (Rieke et al. 1997). Das pulserzeugende Integratorneuron und seine engsten

”
Verwandten“ werden daher weithin zum Studium der neuronalen Kodierung

verwendet (Gerstner 1999b). Das Rauschen wird in dieser Arbeit als gaussisch
und weiß angenommen, so daß die zeitliche Entwicklung des Membranpotenti-
als des Neurons durch einen Ornstein-Uhlenbeck Prozeß beschrieben wird. Das
Modell wird daher als Ornstein-Uhlenbeck Neuron bezeichnet (Uhlenbeck and
Ornstein 1930; Lánský and Rospars 1995). Das Problem, die Verteilung der
Intervalle zwischen zwei Pulsen zu bestimmen (interspike-interval distribution,
ISID), ist damit genau das Erstpassagezeitproblem für den Ornstein-Uhlenbeck
Prozeß mit einem absorbierenden Rand (Schrödinger 1915). Alle hier erziel-
ten Ergebnisse sind daher direkt auf Ornstein-Uhlenbeck Prozesse beliebigen
Ursprungs übertragbar.

Da das digitale Ausgangssignal des Neurons aus einer Folge stereotyper
Pulse besteht (spike train), trägt nicht die Form der Pulse, sondern lediglich
ihre Anordnung in der Zeit Bedeutung. Deshalb werden die vom Neuronen-
modell erzeugten Pulsfolgen mit den Methoden der Theorie der Punktprozesse
untersucht (Cox and Lewis 1966). Als Maß für die Güte der Kodierung eines
periodischen Signals wird das Signal-Rausch-Verhältnis der erzeugten Pulsfol-
ge verwendet (signal-to-noise ratio, SNR).

Das wesentliche Ergebnis dieser Dissertation ist, daß das Ornstein-Uhlen-
beck Neuron zwei Arten rauschinduzierter Resonanz zeigt: zum einen klassi-
sche stochastische Resonanz, d.h. ein optimales Signal-Rausch-Verhältnis bei
einer bestimmten Amplitude des Eingangsrauschens. Hinzu tritt eine Reso-
nanz bezüglich der Frequenz des (deterministischen) Eingangssignals, des Rei-
zes. Reize eines bestimmten Frequenzbereichs werden somit in Pulsfolgen ko-
diert, die zeitlich deutlich strukturiert sind, während Stimuli außerhalb des
bevorzugten Frequenzbandes zeitlich homogenere Pulsfolgen auslösen. Für
diese zweifache Resonanz wird der Begriff stochastische Doppelresonanz ein-
geführt (stochastic double resonance, SDR). Der Effekt wird auf elementare
Mechanismen zurückgeführt und seine Abhängigkeit von den Eigenschaften
des Reizes umfassend untersucht. Dabei zeigt sich, daß die Reizantwort des
Neurons einfachen Skalengesetzen unterliegt und von den verbleibenden ska-
lierten Größen entweder unabhängig ist oder aber in einfacher Weise abhängt.
Insbesondere ist die optimale skalierte Rauschamplitude ein universeller Pa-
rameter des Modells, der vom Reiz gänzlich unabhängig zu sein scheint. Die
optimale Reizfrequenz hängt hingegen linear von der skalierten Reizamplitude
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ab, wobei die Proportionalitätskonstante wiederum vom Gleichstromanteil des
Reizes bestimmt wird (Basisstrom, base current). Während große Basisströme
Frequenz und Amplitude nahezu entkoppeln, so daß Reize beliebiger Amplitu-
de in zeitlich wohlstrukturierten Pulsfolgen kodiert werden, erlauben es kleine
Basisströme, das optimale Frequenzband durch Veränderung der Reizamplitu-
de zu wählen. Da Pulspakete nur dann durch ein neuronales Netzwerk pro-
pagieren können, wenn sie genügend groß und zeitlich hinreichend scharf sind
(Diesmann et al. 1999), könnte die stochastische Doppelresonanz der selekti-
ven Signalverarbeitung mit Hilfe sogenannter Synfire-Ketten zugrundeliegen
(Abeles 1991).

Als ein weiteres Ergebnis wird gezeigt, daß stochastische Resonanz lediglich
als Artefakt einer kaum haltbaren Modellannahme auftritt, wenn zur Vereinfa-
chung der mathematischen Behandlung vorausgesetzt wird, daß der Reiz nach
jedem vom Neuron abgefeuerten Puls auf eine feste Phase zurückgesetzt wird
(Reizung mit Nebenbedingung, constrained stimulation).

Diese Ergebnisse zur Signalverarbeitung fußen auf einigen methodischen
Neu- bzw. Fortentwicklungen, die insbesondere alle diejenigen Fragen beant-
worten, die Gammaitoni et al. (1998, Sec. V.C.4) in einem unlängst erschie-
nenen Übersichtsartikel aufwerfen. Zunächst wird ein zuverlässiges numeri-
sches Verfahren zur Bestimmung der Intervallängenverteilung entwickelt. Die-
ses wird ergänzt durch verbesserte und erstmals quantitativ geprüfte Nähe-
rungen für diese Verteilungen. Während die Lösungen des Erstpassagezeit-
problems des Ornstein-Uhlenbeck Prozesses nur in impliziter Form vorliegen,
ermöglichen diese Näherungen, speziell das Arrheniusmodell mit Stromterm
(Arrhenius&Current model), analytische Untersuchungen in in weit größerem
Umfang. Zur Analyse von Pulsfolgen, die von periodischen Pulsfolgen ohne
Rücksetzen erzeugt werden (unconstrained stimulation), wird eine Markoffket-
tenanalyse entwickelt, die es insbesondere erlaubt, das Leistungsspektrum der
Pulsfolge und damit deren Signal-Rausch-Verhältnis zu bestimmen. Ebenso
kann die Pulsintensität (spike intensity) berechnet werden, die in der Ver-
gangenheit wenig Beachtung gefunden hat, obwohl sie ausgezeichnet geeignet
ist, um die Reizantwort des Neurons zu veranschaulichen. Für den Fall der
Reizung mit Nebenbedingung werden einige Methoden aus der Theorie der
Erneuerungsprozesse abgeleitet. Programmcode für alle neu entwickelten Ver-
fahren wird öffentlich zugänglich gemacht (Plesser 1999).

Die Dissertation gliedert sich wie folgt: Kapitel 1 gibt einen ausführlichen
Überblick über die Problemstellung, bevor das Ornstein-Uhlenbeck Neuron in
Kapitel 2 eingeführt wird. Näherungen für die Intervallverteilung werden in
Kapitel 3 untersucht, während in Kapitel 4 die Markoffkettenmethode ent-
wickelt und geschlossene Ausdrücke für die spektrale Leistungsdichte und das
Signal-Rausch-Verhältnis abgeleitet werden. Die Ergebnisse dieser Disserta-
tion sind in Kapitel 5 dargestellt und werden in Kapitel 6 zusammenfassend
diskutiert. Zwei Anhänge behandeln technische Aspekte.
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Chapter 1

Introduction

The human brain is the most fascinating puzzle posed to the scientist. With a
minute power consumption of just 12 watt (Sarpeshkar 1998), the nervous sys-
tem provides us with a highly efficient signal processing, memory and control
mechanism. Even more, this system can adapt to environmental conditions
on short timescales—we are able to learn—and has an astonishing ability to
re-organize itself. For example, the auditory cortex may process sign language
in deaf humans (Nishimura et al. 1999). Above all, the brain provides us with
the most unfathomable qualities: a free will, a conscience and the conscious
awareness of our own existence.1

Technology has little to put up against this feat of evolution: there might be
sensors more suitable for night vision, number crunching computers excelling in
banking and simulations, and CD-ROM archives less fallible than the memory
of a human being. But even marveled achievements of artificial intelligence,
such as the victory of Deep Blue over chess world champion Garry Kasparov
ought to be put in proportion: a power consumption of several kilowatt, plus
an operating team, versus a single brain running on but a dozen watt. Besides,
Deep Blue is good for little but playing chess, while Garry Kasparov might well
crack a joke or treat you to a cup of tea.

The brain is the outcome of a billion years of optimization in the presence
of ecological constraints: not guaranteed to be best, but certainly impressive.
This optimization has created a solution surprisingly different from all ma-
chinery engineers have designed till very recently.2 Whereas the latter strove
to retain control over all aspects of their inventions—and a nuclear power
plant should better be under control at all times—nature forwent total control
to achieve better. Evolution created a fascinating ensemble of independent,

1From a mechanistic viewpoint, the free will is the ultimate achievement: a deterministic
apparatus persuading itself of a freedom it does not possess—and providing the means to
uncover, after some three millenia of philosophy and science, this paradox. In short, the
material triumph of mind over matter.

2The same can be said for chemistry: the cellular machinery far excels organic chemistry
in the synthesis of proteins.
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seemingly fallible neurons which miraculously interact to form a working brain.
The ensuing highly irregular activity has puzzled neuroscientists from the early
days on.

This irregularity has commonly been declared noise, considered a nuisance,
and averaged out over repetitions of experiments. But are we indeed to accept
that hundreds of millions of years of evolution would have culminated in a
“noisy” brain if a system void of irregularity were better? To the contrary, we
ought to conclude that the brain benefits from irregularity. This idea has been
gaining acceptance in recent years (Laughlin et al. 1998).

The task is thus posed to elucidate how such irregularity, be it from fluctu-
ating receptor-cell responses, from synaptic transmission, or from uncorrelated
signals, affects the transmission of a signal through an individual neuron. This
dissertation aims to contribute to this task, with a focus on the transmission
of periodic signals by neurons of the sensory pathways of vertebrates.

The benefits of noise: Stochastic resonance

Based on geophysical observations, Benzi, Sutera, and Vulpiani (1981) sug-
gested that minute periodic variations of the orbit of the earth might regu-
larly induce ice ages by virtue of noise-induced resonance, an effect they called
stochastic resonance. It has been established firmly in a large number of physi-
cal systems since and is well understood theoretically. A comprehensive review
is given by Gammaitoni et al. (1998), while Wiesenfeld and Jaramillo (1998)
provide a concise summary oriented towards applications in biology.

A system is said to exhibit stochastic resonance if the proper amount of
input noise induces an optimal coherence of output and input signal. To inves-
tigate stochastic resonance, experimentalists usually feed a deterministic signal
into the system under study, such as Schmitt triggers (Fauve and Heslot 1983),
lasers (McNamara et al. 1988; Giacomelli et al. 1999), level crossing detectors
(Gingl et al. 1995), or ion channels (Bezrukov and Vodyanoy 1997). Some
response property is measured, including the power spectral density (Benzi
et al. 1981), the signal-to-noise ratio (McNamara et al. 1988), the correla-
tion to the input signal (Collins et al. 1995), the transinformation (Levin and
Miller 1996), or residence time distributions (Gammaitoni et al. 1989). If this
response property passes through a maximum for a particular amplitude of
the input noise, this is taken as evidence for stochastic resonance.

The theory of stochastic resonance was first developed for dynamical sys-
tems, which permit analytical approaches, although most of this work is lim-
ited to the adiabatic regime for technical reasons (McNamara and Wiesenfeld
1989). This precludes the investigation of the influence of the signal frequency
on the stochastic resonance effect. The appearance of stochastic resonance can
roughly be explained as follows: The system will generate discernible output
every time its internal state surmounts some barrier. If the deterministic input
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signal is too weak to induce crossings, the system will be silent in the absence
of noise, and weak noise will induce only rare, incoherent crossings. Strong
noise, on the other hand, will induce frequent, but random transitions. At an
intermediate noise intensity, though, the rate of the noise-induced crossings
will coincide with the timescale set by the input signal, yielding a coherent
output signal. Stochastic resonance is thus a cooperative effect between signal
and noise.

Longtin, Bulsara, and Moss (1991) were the first to search for stochas-
tic resonance in the nervous system. Since then, it has been demonstrated
in sensory modalities of many species, including crayfish mechanoreceptors
(Douglass et al. 1993), the cricket cercal system (Levin and Miller 1996), rat
cutaneous receptors (Collins et al. 1996), human muscle spindles (Cordo et al.
1996), hair cells of the inner ear (Jaramillo and Wiesenfeld 1998), and the hu-
man visual system (Simonotto et al. 1997; Srebro and Malladi 1999). Russell
and Moss (1998) have recently reported evidence for the behavioral relevance
of stochastic resonance: young paddlefish living in the murky waters of the
Mississippi river can detect their plankton prey much better in the presence of
(electric) noise.3 The application of stochastic resonance to improve cochlear
implants for the profoundly deaf appears to be well on its way (Morse and
Evans 1996).

Early theoretical studies of stochastic resonance in neurons were based on
two-state neurons as suggested by McCulloch and Pitts (1943), which could
be treated in the framework of the theory for bistable systems (Bulsara et al.
1991). Work on more realistic neuron models such as the FitzHugh-Nagumo
model relied on simulations (Longtin 1993; Wiesenfeld et al. 1994). Other au-
thors treated neurons as simple threshold detectors, ignoring the singular per-
turbation induced by spikes (Jung 1994), or as rate coders (Collins et al. 1996).
The investigation of more tractable integrate-and-fire neuron models has suf-
fered from technical difficulties and has been limited to slow stimuli (Bulsara
et al. 1994; Gitterman and Weiss 1995; Bulsara et al. 1996). Gammaitoni et al.
summarize the situation as follows in their review (1998, Sec. V.C.4):

As yet, the theory above is based on a number of unrealistic as-
sumptions; moreover, it contains technical difficulties that have yet
to be overcome:

(1) The phase of the sinusoidal stimulus has been reset after each
firing event to the same initial value. This approximation is
unrealistic from a physiological point of view, since a large
amount of information about the coherence of the stimulus
is eliminated. A theory of first-passage time distributions in
the presence of a periodic forcing that explicitly avoids this
assumption has not yet been put forward.

3For more on the electrosensory system of the paddlefish, see Wilkens et al. (1997).
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(2) Since the resting voltage of a neuron is very close to the potas-
sium voltage, being a lower bound for the variation of the
membrane voltage, an originally sinusoidal stimulus becomes
strongly rectified. It is therefore not realistic simply to add the
sinusoidal stimulus to the membrane voltage in the integrate-
and-fire model without taking into account rectification.

(3) Strictly speaking, the method of image sources [used by Bul-
sara et al. (1996) to obtain the interspike-interval density] is
applicable only to diffusion processes that are homogeneous
in space and time variables. The error made by using this
method (as an approximation) in time-inhomogeneous equa-
tions . . . has not been estimated mathematically.

Methods for the analysis of periodic forcing without reset are presented in
Chapter 4 answering to (1). Chapter 5.2 provides experimental evidence that
rectification of stimuli as mentioned in (2) may safely be ignored. The method-
of-images approximation of Bulsara et al. (1996) is tested quantitatively in
Chapter 3 and shown to be highly unreliable, confirming the doubts raised
in (3). Better approximations are proposed.

Origins of noise in the nervous system

Before embarking on a study of the effect of noise on the workings of neurons,
the origin of this noise deserves some comment. In most physical systems, such
as the archetypical Brownian motion of lycopodium spores on water, clearly
separated timescales exist as well as established methods to distinguish the
slow, macroscopic degrees of freedom from the fast ones, which are treated
as noise (van Kampen 1985; Eyink 1998). The situation is less clear in the
neurosciences, where three sources of irregularity are to be considered: the
membrane, the synapses, and uncorrelated signals.4

The membrane of neurons is a lipid bilayer, nearly impenetrable to most
ions, with interspersed ion channels and pumps, generating an electric poten-
tial difference between the interior and the exterior of the cell. Both the gating
of channels and the pumping of ions are discrete processes, giving rise to fluc-
tuations. The sheer number—and supposed independence—of channels and
pumps averages these fluctuations to a level where they are largely irrelevant
to the operation of the neuron. Indeed, the great success of models based

4Further sources are changes in the pattern of innervation and direct electromagnetic
influences of the environment on neurons. The former preclude direct comparison across
individuals of a species. Fortunately, the rewiring of neurons is sufficiently slow to be
neglected in studies on neural information processing which do not focus on learning. The
latter—while hotly debated in the context of electro-smog—seems to be a speculative issue,
even though it is exploited in some experiments (Gluckman et al. 1996), as well as by
specialized species (Neiman et al. 1999); but see Holt and Koch (1999).
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on channel kinetics, such as the Hodgkin-Huxley and Morris-Lecar models, in
describing the response of isolated neurons to injected currents testifies to the
irrelevance of fluctuations arising from the discreteness of channels (Kandel
et al. 1991; Ermentrout 1996). This conclusion holds likewise for the somatic
spike generator (Bryant and Segundo 1976; Mainen and Sejnowski 1995). The
membrane is thus no relevant source of irregularity in firing patterns.

Genuine irregularity is generated at chemical synapses: each signal trans-
mission between pre- and postsynaptic cell is achieved by the release of a ran-
dom number of practically identical neurotransmitter vesicles (Johnston and
Wu 1995). This results in measurable fluctuations of postsynaptic currents
and potentials. As the number of vesicles released has a Poisson distribution,
this may be likened to radioactive decay as a true source of randomness.5 A
recent study by Maass and Natschläger (1999) indicates that this synaptic
unreliability may permit pools of neurons to perform analog computations.

The major source of irregularity in neuronal activity are not fluctuations
at the molecular or synaptic level: Mainen and Sejnowski (1995) have demon-
strated that the irregularity of firing patterns of cortical neurons can largely
be traced to the irregularity of the input impinging on these neurons. This
is consistent with the observation that cortical neurons fire highly randomly
when recorded from the living animal, while generating regular spike sequences
in slice preparations (Stevens and Zador 1998). The irregularity of neuronal
spike trains in vivo may be explained as follows: except for specific neurons
in sensory or motor pathways, only a small proportion of all inputs to a neu-
ron will transmit information related to the specific stimulus presented by the
experimentalist. Given the energy-efficiency of the brain, it appears highly im-
plausible that all other input will just be nonsensical: it will convey some other
information. It is by definition of the experimental task that these signals are
termed noise.

Spiking neuron models

Most neurons in the central nervous system may be subdivided into a dendritic
tree, a cell body (soma), and an axon. Input from other neurons arrives at
tens of thousands of synapses located on the branches of the dendritic tree in
form of miniature current pulses. These are summed across the tree, yielding
a net input current which induces variations of the potential difference across
the cell membrane in the soma. If this potential reaches a threshold, a sharp
voltage pulse—an action potential or spike—is generated at the axon hillock,
a particularly excitable patch of the membrane. This spike rapidly propagates
along the axon to convey a signal to other neurons (Kandel et al. 1991).

5The release of vesicles is no genuinely random process, but from the viewpoint of elec-
trophysiology the statement has much truth.
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A biologically realistic model of an entire neuron as sketched above easily
requires hundreds of coupled, nonlinear differential equations (Segev and Burke
1998), whence—as Henry Tuckwell reminds the reader in his Introduction to
theoretical neurobiology—

. . . [one] fundamental principle in neural modeling is that one
should use the simplest model that is capable of predicting the
experimental phenomena of interest. (Tuckwell 1988, p. 85)

In this spirit, detailed models for the generation of action potentials will not
be discussed here, nor shall the complex geometry of the neuron be considered.

Neurons communicate with each other by sequences of stereotyped action
potentials which they transmit via their axons. Since all these spikes are
alike, information will only be carried by the timing of the spikes, but not
by their particular shape. There is growing evidence that the fine temporal
structure of these spike trains is essential to neural information processing
(Bair and Koch 1996; deCharms and Merzenich 1996; Gabbiani et al. 1996;
Strong et al. 1998). A particularly well studied phenomenon is the localization
of sound sources in barn owls (Konishi 1991; Knudsen 1984): Auditory neurons
in this specialist species respond to frequencies up to 8 kHz with spikes that are
precisely phase-locked to the stimulus. Spike trains from both ears are fed into
coincidence detectors in the nucleus laminaris, which detect interaural time
differences with an acuity of a few microseconds. This enables owls to measure
the azimuthal location of a sound source, e.g. a mouse, to within 2◦ (Gerstner
et al. 1996). The investigation of such temporal coding requires neuron models
able to predict the spike trains evoked by time-dependent stimuli.

Spiking neuron models are well suited to this purpose. They characterize
the neuron by a single variable, the membrane potential, which evolves as the
neuron is stimulated. An output spike is fired when some threshold condition is
met, followed by a reset of the internal state of the neuron; see Gerstner (1999b)
for a review. The archetypical spiking neuron model, the leaky integrate-and-
fire model of Lapicque (1907), will be introduced in Chapter 2. For the sake
of brevity and precision, the term Ornstein-Uhlenbeck neuron has been coined
for the leaky integrate-and-fire neuron driven by a deterministic stimulus and
additive Gaussian white noise (Lánský and Rospars 1995). The results of this
thesis are based on that model.

The theory of point processes is particularly suited to investigate the sta-
tistical structure of spike trains, i.e. sequences of spike times (Cox and Lewis
1966; Daley and Vere-Jones 1988). Its use in the neurosciences has been pio-
neered by Perkel, Gerstein, and Moore (1967). Neural responses are analyzed
in the framework of that theory in this thesis.
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Aims, scope, and organization

This thesis will show that noise enhances the signal processing capabilities of
neurons by means of stochastic resonance. Specifically, the coding of periodic
stimuli into spike trains in the presence of white noise is investigated. Response
properties are studied for both constrained stimulation, with a reset of the
stimulus after every spike, and unconstrained “natural” stimulation. The study
focuses on subthreshold stimuli, i.e. such that would not elicit spikes in the
absence of noise. This choice is made because suprathreshold, periodic driving
evokes complex N:M phase-locking phenomena, and thus appears ill suited to
transmit periodic stimuli (Keener et al. 1981; Tateno 1998). Spike trains fired
in response to subthreshold stimulation, in contrast, preserve the periodicity
of the stimulus. Furthermore, Kempter et al. (1998) have shown that neuronal
coincidence detectors, which are central to stereophonic hearing, perform best
for subthreshold stimulation.

The Ornstein-Uhlenbeck neuron is derived from Stein’s more elementary
model in Chapter 2. Numerical methods for the computation of interspike-
interval densities are developed, and some important properties of these den-
sities proven. The canonical form of the stimuli used throughout the thesis
is defined. Existing approximations to the Ornstein-Uhlenbeck neuron are
evaluated in Chapter 3. The Arrhenius&Current model is introduced as an
improved approximation providing an explicit expression for the interspike-
interval density.

The response of the neuron to periodic stimuli without reset is analyzed
by way of a Markov chain as proposed in Chapter 4. The elicited spike
trains are comprehensively characterized in terms of the distribution of spikes
with respect to the stimulus phase (spike phase density), the phase-averaged
interspike-interval density, and their power spectral density. The spike inten-
sity, well suited to visualize the temporal structure of responses, is derived
from the Markov chain analysis as well. Corresponding results for constrained
stimulation with reset are obtained from the theory of renewal processes.

Chapter 5 presents the results of this thesis. The preeminent finding is
that the Ornstein-Uhlenbeck benefits from twofold stochastic resonance in re-
sponse to unconstrained sinusoidal stimulation: The signal-to-noise ratio of the
elicited spike train is maximized as a function of both input noise amplitude
and stimulus frequency (Figure 5.14, p. 99). This effect is named stochastic
double resonance (SDR) and prevails over a wide range of stimuli (Figure 5.17,
p. 104). Moreover, the response properties of the neuron are shown to be ei-
ther independent of or linearly related to stimulus properties under suitable
scaling. The optimal scaled noise amplitude in particular is independent of
all stimulus parameters and thus a universal property of the neuron (Figures
5.19, p. 107, and 5.25, p. 114). It is argued that the noise-induced resonance
in stimulus frequency enables the neuron to operate as a bandpass filter in the
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following sense: Stimuli near the resonance frequency will evoke spike trains
with clear temporal structure, while stimuli outside the preferred band will
elicit temporally homogeneous trains. This filter may operate in a “transmis-
sion mode”, with an optimal frequency independent of the stimulus amplitude,
or in a “discrimination mode” with an amplitude-dependent optimal frequency
(Figure 5.25, p. 114). In case of constrained stimulation with reset, stochastic
resonance is demonstrated for peculiar stimuli (Figure 5.3, p. 86), but shown to
vanish under biologically plausible conditions (Figure 5.6, p. 89). All findings
are based on numerical investigations of the model and were largely verified
by means of simulations. Their origins are discussed in detail.



Chapter 2

The Ornstein-Uhlenbeck Neuron

This chapter introduces the Ornstein-Uhlenbeck neuron as the workhorse of
this thesis. The model is derived from Stein’s more elementary model, general-
izing earlier results. It is shown that the stochastic input to Stein’s model may
be replaced by a deterministic stimulus with additive Gaussian white noise,
provided that the original input comprised both excitatory and inhibitory com-
ponents. A robust and efficient algorithm for the numerical computation of
interspike-interval densities in response to arbitrary time-dependent stimuli is
proposed, and it is proven that the latter densities are strictly positive. The
canonical stimuli used throughout this thesis are defined towards the end of
the chapter.

The Ornstein-Uhlenbeck neuron is defined as a leaky integrate-and-fire neu-
ron exposed to additive Gaussian white noise. It is widely used to investigate
the nature of the neural code (Maršálek et al. 1997; Troyer and Miller 1997;
Bugmann et al. 1997; Feng 1997; Shadlen and Newsome 1998). The leaky
integrate-and-fire neuron itself was first introduced by Lapicque (1907) in a
discussion of membrane polarizability. It idealizes the neuron as a capacitor
C, in parallel with an Ohmic resistance R and a battery maintaining the poten-
tial VL to resemble ion channels and pumps, respectively, see Fig. 2.1. In the
absence of input, the potential difference across the capacitor will be v = VL.
The exterior of the neuron is taken as reference potential, and v is the potential
of the interior of the neuron. It is referred to interchangeably as membrane
potential, voltage, or polarization. The resting potential is VL ≈ −65 mV
for typical neurons (Tuckwell 1988). The effective input current i(t) may hy-
perpolarize (v(t) < VL) or depolarize (v(t) > VL) the membrane. Once the
membrane is sufficiently depolarized for the potential v(t) to reach a threshold
Θ, a spike is discharged. Immediately afterwards, the membrane potential is
re-polarized to a reset value v = VR < Θ, which need not be identical to the
resting value VL. This yields the following equations for the dynamics of the



10 The Ornstein-Uhlenbeck Neuron

(a) (b)

i(t)

f(t)
VL

R

Cv(t) f(t)

i(t)

i(t)  

t

f(t)  

v(t)  

v
L
 

Θ 

(c)

Figure 2.1: (a) Input i(t) to the neuron arrives through the dendritic tree in form of small
post-synaptic current pulses, which are added at the soma, and can initiate spikes at the
axon hillock (black area). They propagate along the axon, and transmit the output f(t)
to other neurons. (b) The leaky integrate-and-fire neuron is a model of the spike generator
at the axon hillock. The input current i(t) charges the membrane capacitor C, while some
current leaks through the membrane, i.e. resistor R. Ion pumps in the membrane try to
maintain a potential VL in the absence of input. Once the potential v(t) has reached a
threshold, an output spike is initiated and the capacitor discharged. After Johnston and
Wu (1995). (c) Evolution of membrane potential v(t) (center) driven by excitatory and
inhibitory pulse trains i(t) (bottom). The output f(t) of the neuron is shown at the top.

neuron,

τmv̇(t) = − [v(t)− VL] +Ri(t) , v(t) = Θ =⇒ v(t+) = vR . (2.1)

Here, τm = RC is the effective membrane time constant of the neuron, and
the dot denotes the derivative with respect to time. The output of the neuron
is modeled as a sequence of δ-spikes at the times tj of threshold crossings,

ft(t) =
∑

tj∈t

δ(t− tj) , t = [ t1 < t2 < t3 . . . | v(tj) = Θ ] . (2.2)

The ordered set t of spike times is called the spike train.
The major simplifying assumption of the model is to ignore the spatial

complexity of the neuron. It merely describes the transformation of an effective
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input current i(t), which results from dendritic processing of synaptic input,
into an output spike train ft(t) by the neuronal spike generator at the axon
hillock. A further simplification is to replace the nonlinear dynamics of the
spike generation process, as described by the Hodgkin-Huxley equations, by a
linear model for the evolution of the membrane polarization, combined with
a threshold condition for spike initiation. The spikes themselves are singular
events superimposed onto the linear evolution.

Subtypes of the leaky integrate-and-fire model differ in the input currents
they assume, a possibly time-dependent threshold function Θ(t), the reset po-
tential vR or the presence of a lower bound on the hyperpolarization. The
particular case of the Ornstein-Uhlenbeck neuron is discussed in the next sec-
tion.

2.1 Derivation from Stein’s model

Building on work by Gerstein and Mandelbrot (1964), Stein (1965) suggested
to model the dendritic input current as a sum of Poisson processes,

Ri(t) =
K
∑

k=1

αk dNλk(t) .

Nλk(t) is a Poisson process with rate λk, so that dNλk(t) is a series of δ-pulses
separated by exponentially distributed intervals. Positive pulse amplitudes
αk correspond to excitatory (depolarizing), negative amplitudes to inhibitory
(hyperpolarizing) input. Inserting this input model into Eq. (2.1) yields Stein’s
neuron model

τmv̇(t) = − [v(t)− VL] +
K
∑

k=1

αk dNλk(t) . (2.3)

In this model, the evolution of the membrane potential is a Markov process
with discrete jumps, i.e. its sample paths are discontinuous,1 complicating
the analysis. Several authors have therefore suggested to approximate Stein’s
model by a continuous diffusion process in the limit of vanishing pulse ampli-
tudes and diverging rates (Gluss 1967; Johannesma 1968). Rigorous results
were first obtained by Kallianpur (1983) and Lánský (1984). The latter proved
that both the sample paths and the interspike-interval density of Stein’s model
converge weakly to those of the Ornstein-Uhlenbeck process under certain con-
ditions on the pulse amplitudes and rates. These results were obtained for
time-independent rates and pulse amplitudes. They are extended to the most

1The sample paths are left-continuous.
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general case here, including time-dependent rates and amplitudes. The deriva-
tion follows the lines of earlier work (Capocelli and Ricciardi 1971; Matsuyama
et al. 1974; Lánský 1984).

Inhomogeneity in time may arise through modulation of the pulse ampli-
tudes αk(t) as well as of the pulse rates λk(t), both of which are assumed to
be sufficiently smooth. Setting τm = 1 and VL = 0 for notational convenience
yields the stochastic differential equation

v̇(t) = −v(t) +
K
∑

k=1

αk(t) dNλk(t)(t) . (2.4)

The membrane potential v is thus a random variable with transition probability

P(v, t+ h |w, t) = Prob{The potential is v at t+ h if it was w at t.} (2.5)

To obtain the diffusion approximation to Stein’s model, i.e. the Ornstein-
Uhlenbeck neuron model, a partial differential equation is constructed for the
temporal evolution of P(v, t+ h |w, t). This is then reduced to a Fokker-Planck
equation via the Kramers-Moyal expansion (van Kampen 1992).

2.1.1 Fokker-Planck equation

Since the inputs Nλk(t)(t) are inhomogeneous Poisson processes, there will be
at most one input pulse within a sufficiently short input interval h > 0. Thus,
the potential can change within this interval in K + 1 distinct ways:

• With probability [1−h
∑

k λk(t)]+o(h), no input pulse arrives in [ t, t+h)
and the potential merely decays exponentially: v −→ v e−h.

• With probability hλk(t)+o(h), an input pulse from source k ∈ {1, . . . , K}
arrives. In addition to the decay, the potential has a jump:
v −→ v e−h +αk(t+ h).

In writing down these probabilities,
∫ h

0
λk(t + s) ds = hλk(t) + o(h) has been

exploited. Further, the pulses are attached to the ends of the intervals to avoid
discontinuities within. This yields for the transition probability density in the
limit h→ 0

P(v, t+ h |w, t) =
[

1− h
K
∑

k=1

λk(t)
]

δ(v − w e−h)

+ h
K
∑

k=1

λk(t) δ
(

v − [w e−h +αk(t+ h)]
)

, (2.6)

where δ(x) is Kronecker’s delta function.
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The evolution of the membrane potential is a Markov process, since the neu-
ronal capacitor is charged by uncorrelated Poissonian pulse sequences. There-
fore, the Chapman-Kolmogorov equation holds and one has for arbitrary v0

and t ≥ t0 (van Kampen 1992)

P(v, t+ h | v0, t0) =

∫ ∞

−∞
P(v, t+ h |w, t)P(w, t | v0, t0) dw

=
[

1− h
K
∑

k=1

λk(t)
]

ehP
(

v eh, t | v0, t0
)

+ h
K
∑

k=1

λk(t) ehP
(

[v − αk(t+ h)] eh, t | v0, t0
)

.

(2.7)

The integral over w is taken along the entire real axis, i.e. assuming that the
membrane potential may take on any value, as is it the case when spike gener-
ation blocked pharmacologically.2 The derivation given here applies to spiking
neurons nonetheless, because the distribution of the intervals between thresh-
old crossings will be expressed in terms of the membrane potential distribution
found in the absence of the threshold in Chapter 2.2.3 Taylor expansion of the
Chapman-Kolmogorov equation (2.7) about h = 0 yields

P(v, t+ h | v0, t0) = P(v, t | v0, t0) + h

{

∂

∂v

[

vP(v, t | v0, t0)
]

+
K
∑

k=1

λk(t)
[

P(v − αk(t), t | v0, t0)− P(v, t | v0, t0)
]

}

+O(h2) .

This immediately leads to

∂

∂t
P(v, t | v0, t0) =

∂

∂v

[

vP(v, t | v0, t0)
]

+
K
∑

k=1

λk(t)
[

P(v − αk(t), t | v0, t0)− P(v, t | v0, t0)
]

.

Since the jump amplitudes αk(t) are assumed small, it is plausible to expand
P(v − αk(t), t | v0, t0) about v to obtain a differential equation for the transition
probability. This Kramers-Moyal expansion yields (van Kampen 1992)

∂

∂t
P(v, t | v0, t0) = − ∂

∂v

[

A1(v, t)P(v, t | v0, t0)
]

+
A2(t)

2

∂2

∂v2
P(v, t | v0, t0)

+
∞
∑

n=3

(−1)n

n!
An(t)

∂n

∂vn
P(v, t | v0, t0) . (2.8)

2Application of tetrodotoxin (TTX) will serve this purpose (Johnston and Wu 1995).
3Previous publications on the diffusion approximation have altogether ignored this com-

plication (Gluss 1967; Johannesma 1968; Capocelli and Ricciardi 1971).
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The coefficients An(t) arising from the expansion are the infinitesimal or jump
moments of the input process

An(v, t) = lim
h→0

1

h

∫ ∞

−∞
znP(v + z, t+ h | v, t) dz

=

{

−v +
∑

k λk(t)αk(t) n = 1 ,
∑

k λk(t)α
n
k(t) n > 1 ,

(2.9)

as is verified by inserting Eq. (2.6).
Equation (2.8) describes a continuous diffusion process if and only if all

jump moments beyond A2 vanish. Stein’s neuron model can thus only be
approximated by a diffusion process if all jump moments beyond A2 vanish
in the limit of infinitesimal jump amplitudes αk(t) and diverging jump rates
λk(t). This requires the existence of sequences

lim
j→∞

α
(j)
k (t) = 0 , lim

j→∞
λ

(j)
k (t) =∞ (2.10)

with

I(t) = v+ lim
j→∞

A
(j)
1 (v, t) = lim

j→∞

K
∑

k=1

λ
(j)
k (t) α

(j)
k (t) <∞ , (2.11a)

1
2
σ2(t) = lim

j→∞
A

(j)
2 (t) = lim

j→∞

K
∑

k=1

λ
(j)
k (t)

[

α
(j)
k (t)

]2
<∞ , (2.11b)

lim
j→∞

A(j)
n (t) = lim

j→∞

K
∑

k=1

λ
(j)
k (t)

[

α
(j)
k (t)

]n
= 0 , n > 2 . (2.11c)

If these conditions are fulfilled, the following Fokker-Planck equation holds

∂

∂t
P(v, t | v0, t0) = − ∂

∂v

[

(−v + I(t))P(v, t | v0, t0)
]

+
σ2(t)

2

∂2

∂v2
P(v, t | v0, t0) .

(2.12)

It corresponds to the Langevin equation

v̇(t) = −v(t) + I(t) + σ(t)ξ(t) (2.13)

for Gaussian white noise ξ(t). I(t) is thus identified as the deterministic stim-
ulus and σ(t) as the root mean square amplitude of the noise.

2.1.2 Diffusion requires inhibition

The membrane potential trajectories of Stein’s model will converge to a dif-
fusion process only if excitatory and inhibitory input are properly balanced.
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If only excitatory prevailed, the continuous sample path of a diffusion process
would only be obtained if jump amplitudes tended to zero so fast that the
noise amplitude would vanish, leaving an entirely deterministic process. To
see this, define general sequences of pulse rates and amplitudes

λ
(j)
k (t) =

M
∑

m=1

jmq
(m)
k (t) , α

(j)
k (t) =

M
∑

m=1

j−ma
(m)
k (t)

with smooth functions q
(m)
k (t) ≥ 0, a

(m)
k (t) > 0 independent of j. One then has

from Eq. (2.11a)

I(t) =
K
∑

k=1

M
∑

m=1

q
(m)
k (t)a

(m)
k (t) + lim

j→∞

K
∑

k=1

M
∑

m>`

jm−`q
(m)
k (t)a

(`)
k (t)

which is finite only if

q
(m)
k (t)a

(`)
k (t) = 0 for all k and m > ` ≥ 1 . (2.14)

The noise amplitude then is from Eq. (2.11b)

σ2(t)

2
=

K
∑

k=1

M
∑

`,m

[

q
(m+`)
k (t)a

(`)
k (t)

]

a
(m)
k (t)

+ lim
j→∞

K
∑

k=1

M
∑

m>i+`

[

q
(m)
k (t)a

(i)
k (t)

]

a
(`)
k (t)jm−i−` = 0 .

The last equality holds because the terms in brackets are zero from Eq. (2.14).
Thus inhibition, i.e. αk(t) < 0 for some k is essential to the diffusion approxi-
mation.

A sequence of pulse amplitudes and rates converging to a diffusion process
is given by Lánský (1997). To extend it to full generality, assume that the
neuron receives M pairs of inputs with balanced excitation and inhibition,
and further K unbalanced inputs. Choose the pulse rates and amplitudes for
the balanced pairs as (m = 1, . . . , M)

excitatory κ(j)
m (t) = j2qm(t) > 0 , α(j)

m (t) =
am(t)

j
≥ 0 ,

inhibitory ν(j)
m (t) = j2rm(t) > 0 , β(j)

m (t) = −am(t)qm(t)

jrm(t)
≥ 0 .

(2.15)

The unbalanced inputs are chosen as (k = 1, . . . , K)

λ
(j)
k (t) = jpk(t) ≥ 0 , γ

(j)
k (t) =

ck(t)

j
. (2.16)
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Inserting into Eq. (2.11) yields

I(t) =
K
∑

k=1

pk(t)ck(t)

σ2(t)

2
=

M
∑

m=1

qm(t)rm(t) + q2
m(t)

rm(t)
a2
m(t)

An(t) = 0 , n > 2 .

(2.17)

The net input current I(t) arises from the unbalanced inputs, while the noise
σ2(t) stems from the balanced inputs alone, in line with the results of the
preceeding paragraph. An important consequence is that the input current
and the noise are completely independent of each other; in particular, one may
assume a combination of time-dependent input with stationary noise.

2.1.3 Canonical form of the Ornstein-Uhlenbeck neuron

Re-introducing the resting potential VL and the membrane time constant τm
while taking the noise amplitude to be constant, yields the diffusion approxi-
mation to Stein’s model equation (2.3) for time-dependent input

τmv̇(t) = − [v(t)− VL] + I(t) + σξ(t) (2.18)

This equation is the Langevin equation for the forced Ornstein-Uhlenbeck
process (Uhlenbeck and Ornstein 1930). ξ(t) is Gaussian white noise.4 The
Ornstein-Uhlenbeck neuron model (OUN) is completed by the addition of a
constant threshold for firing Θ, and a lower bound for the membrane hyper-
polarization v ≥ vhyp. To eliminate parameters redundant in the analysis,5

the membrane potential is measured relative to the resting potential VL and
in units of the resting-to-threshold distance Θ− VL, while time is measured in
units of the membrane time constant τm,

v̄ =
v − VL
Θ− VL

, t̄ =
t

τm
, Ī(t̄) =

I(τmt̄)

Θ− VL
, σ̄ =

σ
√
τm(Θ− VL)

. (2.19)

Thus follows the canonical form of the Ornstein-Uhlenbeck neuron model,
where the bars have been dropped for clarity

v̇(t) = −v(t) + I(t) + σξ(t) , v(t) ≥ vhyp , (2.20a)

v(t) = 1 =⇒ v(t+) = vR = v(t = 0) , (2.20b)

ft(t) =
∑

tj∈t

δ(t− tj) , t = [t1 < t2 < t3 . . . | v(tj) = 1] , (2.20c)

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t′)〉 = δ(t− t′) , ξ(t) Gaussian . (2.20d)

4The noise amplitude σ is measured in units of V
√

s in this definition.
5The scaling for the noise given above Eq. (2) of Plesser and Tanaka (1997) is wrong.
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ft(t) is the output of the neuron firing the spike train t. With the exception
of Chapter 3, all results of this work are based on this Ornstein-Uhlenbeck
neuron, and vhyp = −∞ will be assumed throughout. A few comments on the
model are appropriate:

• Many neurons in the afferent sensory pathways receive far more de-
scending input from cortical regions than ascending input from receptor
cells, and several studies suggest that excitatory and inhibitory input
are nearly balanced (Shadlen and Newsome 1998; van Vreeswijk and
Sompolinsky 1996). These are precisely the conditions required for the
diffusion approximation.

• The Ornstein-Uhlenbeck neuron reproduces responses of sensory neurons
well, see Chapter 5.2.

• The form of the Langevin equation (2.20a) is independent of whether the
time dependence arises from varying input rates or pulse amplitudes; see
Lánský (1997).

• The Ornstein-Uhlenbeck neuron is a mathematically convenient approxi-
mation to the model of Stein. If the assumption of tiny pulses arriving in
large numbers is violated, the behavior of the Ornstein-Uhlenbeck neu-
ron may deviate considerably from Stein’s model; Tuckwell and Cope
(1980), but see Lánský (1984).

• The inclusion of reversal potentials for the input currents would introduce
multiplicative noise to the diffusion approximation (Lánský and Lánská
1987) and greatly complicate the analysis. The main effect of the reversal
potentials is to impose unattainable upper and lower boundaries for the
membrane potential. If the upper boundary is below the threshold, the
neuron would be silent, while a boundary above threshold is not felt.
The upper boundary may therefore safely be ignored, while the lower
boundary is mimicked by the reflecting lower boundary vhyp.

2.2 Interspike-interval density

Neurons communicate with each other by the transmission of spikes, whence
investigations of the neural code focus on the statistical properties of spike
trains. These may be inferred from the distribution of interspike intervals
as will be discussed in Chapter 4. The problem is thus posed to determine
at which time t a neuron will fire the next spike if it has just fired at time
t̂. Since the neuron will spike once the membrane potential v(t) reaches the
threshold, this is a first-passage time problem. For the model neuron defined
above, it is precisely the first-passage time problem of the Ornstein-Uhlenbeck
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process with an absorbing boundary at the threshold Θ = 1 and a reflecting
boundary at vhyp (van Kampen 1992). No solutions to this problem are known
for general time dependent stimuli, whence numerical methods are required.6

A robust and efficient numerical solution to this problem is developed here.
It is based on the observation that the interspike-interval density may be ex-
pressed in terms of the membrane potential density one would find in the
absence of a threshold (Schrödinger 1915). The resulting integral-equation
representation is used to prove that the ISI density is strictly positive every-
where except at the origin, where it vanishes. This result, which is crucial to
the analysis of Chapter 4.4, had only been conjectured hitherto (Tateno et al.
1995).

2.2.1 Elementary properties

Let t̂ be the time of the most recent spike, so that v(t̂+) = vR. The next spike
will then be fired at t̂+ τ , where the interspike interval τ (ISI) is defined by

τ = inf{s > 0 | v(t̂+ s) ≥ 1 , v(t̂+) = vR} . (2.21)

In the presence of noise, the membrane potential is a random variable, and in
consequence, the intervals τ as well. For time-dependent stimuli, the neuron
will receive different input I(t̂+s) during intervals beginning at different times
t̂. Therefore, the distribution of the random variable τ is conditional on the
time t̂ of the beginning of the interval. The spike output of the neuron is thus
characterized by the set of all conditional interspike-interval densities (cISID)

ρ(τ | t̂) = Prob
{

The interval beginning at t̂ has length τ
}

. (2.22)

The dependence of the ISI density on the stimulus I(t) and the reset potential
vR are implied in the notation. In the theory of stochastic processes, the
interspike-interval density is known as first-passage-time density (FPTD).

The ISI density is more readily discussed in the framework of a bound-
ary value problem of the Fokker-Planck equation derived in the previous sec-
tion. With the change of variables given by Eq. (2.19) and assuming time-
independent noise, Eq. (2.12) becomes

∂

∂t
P(v, t |w, s) = − ∂

∂v
[−v + I(t)]P(v, t |w, s) +

σ2

2

∂2

∂v2
P(v, t |w, s) . (2.23a)

For the interval beginning at t̂, the initial condition is

P
(

v, t | vR, t̂
)

= δ(v − vR) . (2.23b)

6The graphical method of Scharstein (1979) applies only to the noise-free case (σ = 0).
It cannot be adapted to the noisy model. See also Tuckwell (1988, Ch. 3.7).
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The threshold at v = 1 is an absorbing boundary, and the limit of hyperpolar-
ization a reflecting one, requiring

P
(

1, t | vR, t̂
)

= 0 ,
∂

∂v
P
(

v, t | vR, t̂
)

∣

∣

∣

∣

v=vhyp

= 0 . (2.23c)

If the membrane potential is not bounded from below, i.e. vhyp = −∞, the
reflecting boundary condition is equivalent to P

(

−∞, t | vR, t̂
)

= 0.

The probability that the potential is below threshold at any t > t̂ is

G(t | t̂) =

∫ 1

vhyp

P
(

v, t | vR, t̂
)

dv (2.24)

and its time-derivative yields the conditional ISI density

ρ(t− t̂ | t̂) = − d

dt

∫ 1

vhyp

P
(

v, t | vR, t̂
)

dv . (2.25)

If the third derivative of the stimulus I(t) exists and is continuous, The-
orems 3.13.3 and 3.14.1 of Gihman and Skorohod (1972) guarantee that the
transition probability P(v, t |w, s) exists and is continuously differentiable at
least once with respect to t and s and twice with respect to v and w. There-
fore, the interspike-interval density ρ(τ | t̂) exists and is continuous. The initial
value of the conditional ISI density is ρ(0 | t̂) = 0 if vR < 1−ε, ε > 0, since the
continuity of the potential trajectories precludes instantaneous jumps to the
threshold. This condition on the reset potential vR simply requires a finite re-
set after each spike, which is a plausible assumption. G(t | t̂) is the probability
for the potential to be inside an interval which contains no sources of probabil-
ity and has one absorbing boundary. Thus, it is a non-increasing function of t,
and ρ(τ | t̂) is non-negative. From Eqs. (2.24) and (2.23b) follows furthermore
that ρ(τ | t̂) is normalized

∫ ∞

t̂

ρ(t− t̂ | t̂) dt = 1− lim
t→∞

∫ 1

vhyp

P
(

v, t | vR, t̂
)

dv = 1 . (2.26)

The conditional interspike-interval density ρ(τ | t̂) is thus a well-defined, con-
tinuous probability density.

The first-passage time problem of the Ornstein-Uhlenbeck process was ap-
parently first attacked by Siegert (1951) for constant input I(t) = µ using
Laplace transforms. He derived a hierarchy of equations for the moments
Mn(vR) of the first-passage-time density (ISI density) from the reset potential
vR to threshold 1. This has been extended to include the effects of a reflect-
ing boundary at finite vhyp by Johannesma (1968). The resulting moment
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equations are

Mn(vR) = 2n

∫ 1−µ
σ

vR−µ
σ

dw ew
2

∫ w

vhyp−µ
σ

dz e−z
2

Mn−1(z) , M0(vR) = 1 . (2.27)

In particular, the mean interval length (mean first-passage time, MFPT) is

〈τ〉 = M1(vR) =
√
π

∫ 1−µ
σ

vR−µ
σ

dw ew
2

[

erf w − erf

(

vhyp − µ
σ

)]

, (2.28)

where erf x is the error function. All further moments are too complicated
to be of much practical use (Stemmler 1996; Inoue et al. 1997). A closed-
form solution for the ISI density ρ(τ | t̂) is known only for the special case
I(t− t̂) = 1 + 2c e(t−t̂), cf. Chapter 3.2.

The second term in the square brackets in Eq. (2.28) is close to −1 even for
vhyp = 0, unless the stimulus is weak or hyperpolarizing (µ � 1) or the noise
very strong (σ � µ), since erf x → −1 quickly for x < 0. This indicates that
the boundary of hyperpolarization may safely be set to vhyp = −∞ provided
the neuron receives depolarizing input. This is confirmed by comparison to
experimental data in Chapter 5.2.

2.2.2 Schrödinger’s renewal Ansatz

A direct numerical evaluation of the ISI density becomes possible if one makes
use of an idea due to Schrödinger (1915); see also Plesser and Tanaka (1997),
Siegert (1951), and Gluss (1967). The only restriction of this method is that
it cannot incorporate a reflecting lower boundary, i.e. vhyp = −∞ is required.

Schrödinger’s approach sets out from the free diffusion solution Pf (v, t |w, s)
of the Fokker-Planck equation (2.23a) for boundary and initial conditions

lim
v→±∞

Pf (v, t |w, s) = 0 , Pf (v, t = s |w, s) = δ(v − w) . (2.29)

As is obvious from the Langevin formulation of the problem (Eq. 2.20a), the
membrane potential v(t) is a linear transform of the input I(t) with superim-
posed Gaussian white noise, and thus will have a Gaussian distribution itself.
Indeed one has (Jung 1993)

Pf (v, t |w, s) =
1

√

2πη2(t− s)
exp

{

− [v − v0(t;w, s)]2

2η2(t− s)

}

, (2.30)

where

v0(t;w, s) = e−(t−s)
[

w +

∫ t−s

0

I(s+ u)eu du

]

, (2.31)

η2(t− s) =
σ2

2

[

1− e−2(t−s)
]

, (2.32)
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v
R

t̂ t+^ τ t
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v

Figure 2.2: If the threshold is de-activated—e.g. by application of tetrodotoxin—the mem-
brane potential evolves freely. The probability Pf

(

Θ, t̂+ τ | vR, t̂
)

to find the potential at the
threshold Θ at time t̂+τ (arrow) is given by integrating over all paths connecting v(t̂+) = vR
with v(t̂ + τ) = Θ. Splitting each path into the first approach to threshold (solid part of
lines) and later return to threshold (dashed part) yields Eq. (2.33).

are the membrane potential in the noise-free case and the variance of the po-
tential, respectively. Schrödinger’s idea was to split the trajectory of the freely
evolving membrane potential from its starting value vR at t̂ to the thresh-
old Θ = 1 at t̂ + τ into two sections: the first approach to the threshold at
t̂+u ≤ t̂+ τ , and later returns to the threshold. This is illustrated in Fig. 2.2.
Integrating over all first arrival times t̂+ u yields

Pf
(

1, t̂+ τ | vR, t̂
)

=

∫ τ

0

Pf
(

1, t̂+ τ | 1, t̂+ u
)

ρ(u | t̂) du . (2.33)

The first-passage-time density ρ(u | t̂) to the threshold is thus related to the free
diffusion solution of the Fokker-Planck equation through an integral equation.
Indeed, Eq. (2.33) is a special form of a renewal equation (van Kampen 1992).
Note that v0(t;w, s) depends on the absolute time s through I(s+ u), whence
Pf (v, t |w, s) cannot be rewritten as a function of t − s alone. This precludes
the use Laplace transforms to solve this renewal equation for time-dependent
stimuli. It is this connection between the free potential distribution and the
ISI density which justified the use of the Chapman-Kolmogorov equation (2.7)
in Section 2.1.

The kernel of the renewal equation (2.33) has a square-root singularity at
τ = u. Defining

Kt̂(τ, u) =
√
τ − uPf

(

1, t̂+ τ | 1, t̂+ u
)

(2.34)

gt̂(τ) = Pf
(

1, t̂+ τ | vR, t̂
)

(2.35)
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one obtains a generalized Abel equation (Linz 1985)

gt̂(τ) =

∫ τ

0

Kt̂(τ, u)√
τ − u

ρ(u | t̂) du . (2.36)

The kernel Kt̂(τ, u) is regular with

Kt̂(τ, τ) ≡ lim
u→τ−

Kt̂(τ, u) =
1√

2πσ2
. (2.37)

Now both the left-hand side and the kernel of the renewal equation are val-
ues of time-independent Gaussians. Therefore, both Kt̂(τ, u) and gt̂(τ) are
differentiable everywhere. From Eqs. (2.34) and (2.37) follows that Kt̂(τ, u)
is strictly positive for all u ≤ τ . The same holds for gt̂(τ) for τ > 0 from
Eq. (2.35), while gt̂(0) = 0 from the initial conditions, Eq. (2.23b).

The Abel equation (2.36) lends itself to direct numerical evaluation for the
interspike-interval density ρ(u | t̂). The algorithm is given in Appendix A. It
requires ∼ O(N2) evaluations of the kernel Kt̂ for the computation of the ISI
density on N points, while the numerical error drops ∼ N−2.9. The results
reported in this work have been obtained with this algorithm.

The transformation of Schrödinger’s renewal equation (2.33) to an Abel
equation is not the only possibility to handle the kernel singularity. Plesser
and Tanaka (1997) suggested to integrate out the singularity, but this can
slow down computations seriously for small noise amplitudes. Buonocore et al.
(1987) have proposed an algorithm based on a different integral equation for
the ISI density. Their approach requires ∼ O(N2) kernel evaluations as well,
but appears to be less stable than the one given here.

2.2.3 Strict positivity of the ISI density

With the aid of the renewal equation (2.33), it can be proven that the ISI is
strictly positive except at the origin, i.e.

ρ(u | t̂) > 0 for all u > 0 . (2.38)

Intuitively, this is clear: Following the reset of the potential to vR < 1 − ε,
noise may induce (or prevent) threshold crossings at any time, albeit with
astronomically small probability for some times. Since this property will be
central to the analysis of Chapter 4.4, a rigorous proof by contradiction is given
here. Let t̂ = 0 and write ρ(τ) ≡ ρ(τ | t̂) for the sake of brevity. As a first step,
it is shown that ρ(τ) cannot be zero in any interval beginning at τ = 0. The
same is then proven for any interval of finite length.

Assume that a > 0 exists such that ρ(τ) = 0 for 0 ≤ τ ≤ a. Then from
Eq. (2.36)

gt̂(a) =

∫ a

0

Kt̂(a, u)ρ(u) du = 0 .
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which is a contradiction since gt̂(τ) > 0 for all τ > 0. Thus an a > 0 exists such
that ρ(τ) > 0 for all τ ∈ (0, a ]. Assume now that ρ(τ) = 0 for 0 < b ≤ τ ≤ c.
Then if follows that for all t ∈ [ b, c ]

gt̂(t) =

∫ t

0

Kt̂(t, u)ρ(u) du =

∫ b

0

Kt̂(t, u)ρ(u) du .

Since gt̂(t) > 0 in [ b, c ], division by gt̂(t) and differentiation with respect to t
yields

∫ b

0

[

∂

∂t

Kt̂(t, u)

gt̂(t)

]

ρ(u) du = 0 for all t ∈ [ b, c ] .

From the first part of the proof, an a > 0 is known to exist with (0, a ] ⊆ (0, b ]
and ρ(u) > 0 for all u ∈ (0, a ]. Further, ρ(u) ≥ 0 has been established for all
u ≥ 0 above, so that the integral vanishes only if the term in brackets is zero.
Therefore one has for all t ∈ (b, c ] and u ∈ (0, a ]

∂

∂t

K(t, u)

gt̂(t)
= 0 =⇒ Kt̂(t, u) = α(u)gt̂(t) .

This is a contradiction, since the kernel Kt̂(t, u) as defined by Eq. (2.34) cannot
be split in this way over an interval of finite length, and the proof is completed.

2.3 Stimuli

The stimulus I(t) driving the Ornstein-Uhlenbeck neuron is in principle en-
tirely general. Since the existence and uniqueness of the interspike-interval
density can strictly be established only if I(t) has a continuous third deriva-
tive, it is convenient to limit the analysis to smooth stimuli. Stimuli composed
of a constant base current µ and cosines of frequencies ωj = j∆ω, i.e.

I(t) = µ+
q

√∑

k α
2
k

∑

j

αj cos(ωjt+ φj) (2.39)

have all required properties and are sufficiently general. The noise-free mem-
brane potential is then from Eq. (2.31)

v0(t+ τ ;w, t) = w e−τ +µ
(

1− e−τ
)

+ q
[

F (t+ τ)− e−τ F (t)
]

, (2.40)

with

F (t) =
1

√∑

k α
2
k

∑

j

αj√
1 + ω2

j

cos(ωjt+ φj − atanωj) .
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Both I(t) and F (t) can efficiently be computed via discrete Fourier transforms.
Independent of the particular choice of the amplitudes αj and phases φj, the
mean square amplitude of the time-dependent stimulus component is

q2

2
= lim

T→∞

1

T

∫ T

0

[

I(t)− µ
]2

dt .

For convenience, q, not q/
√

2, will be called the stimulus amplitude. The
resulting excursions of the noise-free potentials have a mean square amplitude
of

〈

∆v2
0

〉

= lim
T→∞

∫ T

0

[

v0(τ | t̂)− µ
]2

dτ =
q2

2
∑

k α
2
k

∑

j

α2
j

1 + ω2
j

.

Aperiodic stimuli are characterized by a cut-off frequency Ωc and are gen-
erated by drawing the phases φj at random from a uniform distribution over
[0, 2π), while the amplitudes are given by

αj =

{

1 0 < ωj ≤ Ωc ,

exp
[

−1
2
(j − jc)2

]

Ωc < ωj .
(2.41)

They will be used to evaluate the approximations to the Ornstein-Uhlenbeck
neuron in Chapter 3.

Chapter 5 will focus on the processing of sinusoidal stimuli. They are
obtained from the general stimulus of Eq. (2.39) by choosing αj = δjk, where
Ω = ωk is the stimulus frequency. One thus has

I(t) = µ+ q cos(Ωt+ φ0) (2.42)

and for the noise-free potential

v0(t+ τ ;w, t) = w e−τ +µ
(

1− e−τ
)

+
q√

1 + Ω2

[

cos(Ω(t+ τ) + φ0 − ζ)− e−τ cos(Ωt+ φ0 − ζ)
]

(2.43)

where ζ = atan Ω is the phase lag induced by the integration. The initial
phase φ0 is taken to be zero unless stated otherwise. The modulation of the
membrane potential is suppressed with increasing stimulus frequency due to
the low-pass nature of the integrate-and-fire neuron. The stimulus parameters
are visualized in Fig. 5.18, p. 106.

Stimuli are often classified as sub- or suprathreshold, depending on whether
or not they are able to elicit spikes from a neuron in the absence of noise. To



2.3 Stimuli 25

make this notion quantitative, each stimulus is characterized by its relative
distance from threshold7

ε = −
1−

(

µ+
√

2 〈∆v2
0〉
)

σ
. (2.44)

For periodic input, this definition yields

σε =

(

µ+
q√

1 + Ω2

)

− 1 = sup
τ≥0

v0(τ | t̂)− 1 .

The relative distance is thus the minimum distance approached asymptotically
once per stimulus period, relative to the root mean square amplitude of the
noise.

Subthreshold stimuli have ε < 0, suprathreshold stimuli ε > 0. Note that
for periodic stimuli ε < 0 indeed guarantees that the stimulus is subthresh-
old, i.e. in the absence of noise the neuron never fires. For aperiodic input,
however, the definition only holds in a root mean square sense, so that v0 may
occasionally cross the threshold even for ε < 0.

7This definition here has the opposite sign as used in Plesser and Gerstner (1999).





Chapter 3

Approximating the
Ornstein-Uhlenbeck Neuron

Mathematically transparent approximations often provide far more insight into
the nature of physical phenomena than precise solutions that are available
only in implicit or numeric form. This holds for theoretical neurosciences as it
does for physics. Several authors have therefore suggested approximations to
the Ornstein-Uhlenbeck neuron. All of these “models of the model” propose
compact expressions for the interspike-interval densities in response to time
dependent stimuli (Abeles 1982; Gerstner and van Hemmen 1992; Gerstner
1995; Bulsara et al. 1996). This chapter provides the first rigorous evaluation
of the various models abounding in the literature. A new approximation,
the Arrhenius&Current model, is introduced and is shown to be superior to all
existing models. It is used in Chapter 5.3 to explain the parameter-dependence
of stochastic resonance in the Ornstein-Uhlenbeck neuron.

The approximations tested in this chapter fall into two categories: hazard
models (Plesser and Gerstner 1999) and the method-of-images approach of
Bulsara et al. (1996). The models will be introduced below and are tested on
a wide range of periodic and aperiodic inputs in Section 3.3.

3.1 Hazard models

In the absence of noise, the membrane potential v0(t; vR, t̂) evolves according
to Eq. (2.31) after a spike at t̂. The next spike is fired when v0 reaches the
threshold. In the presence of noise, the neuron may fire even though the
noise-free potential v0 has not yet reached the threshold. An intuitive noise
model can be based on the idea of an escape probability: At each moment
of time, the neuron may fire with an instantaneous rate h which depends on
the momentary distance between the noise-free trajectory v0 and the threshold
Θ = 1, and possibly the momentary input current as well. More generally, one
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may introduce a hazard function

h(τ | t̂) = Prob

{

After spike at t̂, neuron fires at t̂ + τ ,
provided it has not fired in [ t̂, t̂+ τ).

}

(3.1)

The noise-free potential is written as v0(τ | t̂) ≡ v0(t̂+τ ; vR, t̂) in this chapter for
compactness. Once the hazard function known, the interspike-interval density
is given by (Cox and Lewis 1966)

ρh(τ | t̂) = h(τ | t̂) exp

[

−
∫ τ

0

h(s | t̂) ds

]

, h(τ | t̂) ≥ 0 . (3.2)

The exponential term accounts for the probability that a neuron “survives”
from t̂ to t̂ + τ without firing; the factor h(τ | t̂) gives the firing probability
at t̂ + τ , provided that the neuron has survived thus far. The cumulative
distribution of the interspike intervals is thus

Ph(τ | t̂) =

∫ τ

0

ρh(s | t̂) = exp

[

−
∫ τ

0

h(s | t̂) ds

]

≤ 1 .

The interspike-interval density ρh is positive by definition and is properly nor-
malized, provided that

∫ τ

0
h(s | t̂) ds→∞ as τ →∞, which is a minor restric-

tion. Thus ρh is a proper probability density independent of the specific choice
of the hazard. Note that ρh(τ | t̂) > 0 whenever h(τ | t̂) > 0. Finally, Eq. (3.2)
may be inverted to express the hazard in terms of the ISI density

h(τ | t̂) =
ρh(τ | t̂)

1− Ph(τ | t̂)
=

ρ(τ | t̂)
1−

∫ τ

0
ρ(s | t̂) ds

. (3.3)

Five hazard models of neuronal dynamics are analyzed here. The various
models differ in the choice of the hazard function h(τ | t̂) as shown in Fig. 3.1.

3.1.1 Arrhenius model

Assume that the membrane potential v is—on average—not too close to the
threshold. The influence of the threshold will then be small, and the poten-
tial be distributed roughly according to the density Pf

(

v, t̂+ τ | vR, t̂
)

for the
threshold-free case, see Eq. (2.30). Comparison of Eqs. (2.31) and (2.32) shows
that the variance η2(τ) of Pf approaches its asymptotic value σ2/2 twice as fast
as v0(τ | t̂) “forgets” initial conditions and past input. Thus, the density for
the membrane potential may be approximated by

Ph
(

v, τ | vR, t̂
)

=
1√
πσ2

exp

{

− [v − v0(τ | t̂)]2

σ2

}

. (3.4)



3.1 Hazard models 29

v
0

h(
v 0)

(a)

0.8 0.9 1 1.1 1.2
0 

1 

2 

v
0

h(
v 0, I

)

(b)

0.8 0.9 1 1.1 1.2
0 

1 

2 

Figure 3.1: Hazard h(v0, I) as function of the noise free potential v0 and input current I
[(b) only]. (a) Arrhenius (red), Abeles (blue), linear ramp (yellow) and Tuckwell models
(green). (b) Arrhenius&Current model for different values of the input current: I = 0
(red), 0.95 (brown), 1 (cyan), and 1.1 (pink). The kinks in the hazard functions for this
model result from the probability current term [Y (τ | t̂)]+. The vertical dotted line marks
the threshold. The noise amplitude is σ = 0.1.

The neuron fires a spike when the membrane potential reaches the threshold
v = 1. It is thus plausible to assume that the firing hazard is proportional to
the probability that the potential is at the threshold (see Fig. 3.2),

hArr(τ | t̂) = w e−x(τ | t̂)2 ∼ Ph
(

1, τ | vR, t̂
)

, wopt = 0.95 . (3.5)

Here,

x(τ | t̂) =
1− v0(τ | t̂)

σ
(3.6)

is the relative distance of the noise-free membrane potential from the threshold.
The constant w = wopt = 0.95 was determined via an optimization procedure
described in Section 3.3.1.

In physical terms, the membrane potential fluctuates about the noise-free
potential v0, and a spike is fired whenever this diffusion pushes the potential
v across the threshold, or barrier. The barrier height is 1− v0, corresponding
to the activation energy (1 − v0)2 required for a spike, while the fluctuations
provide “thermal” energy σ2. Statistical physics then predicts that the activa-
tion rate, i.e. the hazard, is given by an Arrhenius Ansatz as used above (van
Kampen 1992).

For strongly suprathreshold stimuli the noise-free potential may become
much larger than the threshold (v0 � 1), implying an exponentially vanishing
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Figure 3.2: In the Arrhenius model, the hazard is proportional to the “free” probability
density Ph at the threshold, as indicated by the solid bars under the Gaussians. The jagged
black line is the noise-free potential v0(t), and the dashed black line the threshold. The true
density of the potential vanishes for v ≥ 1.

hazard, cf. Fig. 3.1(a). This might seem paradoxical at first, but is of little
concern as long as the input I(t) has no sharp transients. Then, v0(τ | t̂)
reaches the threshold only along continuous trajectories and suprathreshold
levels of the potential are accessible only via periods of maximum hazard, so
that the neuron will usually have fired before v0(τ | t̂) becomes significantly
suprathreshold.

3.1.2 Arrhenius&Current model

Strong positive transients in the input current will push the membrane po-
tential towards and possibly across the threshold in a time that is short on
the timescale of diffusion. The potential density Ph is then shifted as a whole
and, the argument given in the last paragraph of the preceeding section will
no longer hold. In consequence, one expects that the simple Arrhenius Ansatz
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Figure 3.3: The Arrhenius&Current model incorporates the probability current across the
threshold caused by rapid shifts of the membrane potential density. This accommodates
transients in the membrane potential v0(t) that are much faster than noise-induced diffusion
across the threshold.

will not reproduce these transients well. This suggests to include in the haz-
ard the probability current induced by shifting the probability density at the
threshold, Ph

(

Θ = 1, τ | t̂
)

, across threshold with the speed of the center of this

density, v̇0(τ | t̂) = −v0(τ | t̂) + I(t̂ + τ), see Fig. 3.3. Since no spikes can be
induced by drift from above threshold downwards, all negative currents are set
to zero. The drift probability current therefore is

Jdrift(τ | t̂) = [−v0(τ | t̂) + I(t̂+ τ)]+Ph
(

Θ = 1, τ | t̂
)

=
[Y (τ | t̂)]+√

π
e−x(τ | t̂)2

with the relative probability current at threshold

Y (τ | t̂) =
−v0(τ | t̂) + I(t̂+ τ)

σ
=

1

σ

d

dτ
v0(τ | t̂) (3.7)
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Figure 3.4: Abeles (1982) suggested to take the hazard proportional to the “free” proba-
bility of the membrane potential to be above the threshold, as indicated by the shaded areas
under the Gaussians.

and x(τ | t̂) from Eq. (3.6); [Y ]+ = (Y + |Y |)/2. Together with the diffusive
Arrhenius term the hazard function becomes

hA&C(τ | t̂) =
(

w1 + w2[Y (τ | t̂)]+
)

e−x(τ | t̂)2 , wopt
1 = 0.70 , wopt

2 = 0.68 .
(3.8)

As before, w1 and w2 are free parameters with optimal values wopt
1,2 , and w is

from the Arrhenius model. The first term of the hazard will be called diffusion
and the second one drift term. The latter introduces kinks into the hazard
function unless ∂tY (t | t̂) = 0 wherever Y (t | t̂) = 0, see Fig. 3.1(b).

3.1.3 Abeles model

Abeles (1982) suggested that the hazard should be related to the proportion
of the membrane potential density Ph beyond the threshold, i.e. h(τ | t̂) ∼
∫∞

Θ
Ph
(

v, τ | t̂
)

dv, see Fig. 3.4. This Ansatz is somewhat questionable, as the
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correct potential density vanishes beyond the threshold. The widespread use
of sigmoidal activation functions in the theory of neural networks (Wilson and
Cowan 1972), nevertheless warrants a test of this model. To leave room for
improvement, two free parameters w1 and w2 are included:

hAb(τ | t̂) = w1 erfc[x(τ | t̂)− w2] , wopt
1 = 0.66 , wopt

2 = 0.53 . (3.9)

erfc(x) = 1 − erf(x) is the complementary error function. Given the likeness
of error function and hyperbolic tangent, the latter has not been investigated
extensively; preliminary results indicated negligible differences.

3.1.4 Linear ramp model

Figure 3.1(a) suggests that both the Arrhenius and the Abeles hazards are
approximately linear for subthreshold values of the membrane potential. Since
a linear Ansatz greatly simplifies any subsequent analysis, it is well worth to
test a linear ramp hazard function

hlin(τ | t̂) = w2

[

w1 − x(τ | t̂)
]

+
, wopt

1 = 1.81 , wopt
2 = 0.49 . (3.10)

3.1.5 Tuckwell model

Suppose that the input I(t) varies sufficiently slowly so that one may, at any
point of time, take the membrane potential of the neuron to be stationary. A
stationary potential v0(τ | t̂) corresponds to a constant input current I(t̂+τ) =
v0(τ | t̂). In this case, the average firing rate, can be approximated in closed
form1 (Tuckwell 1989)

ν(τ | t̂) =
x(τ | t̂)√

π
e−x(τ | t̂)2 . (3.11)

For positive ν, this may immediately be interpreted as hazard, and including
a parameter for adjustment yields

hTuck(τ | t̂) = w
√
π[ν(τ | t̂)]+ = w[x(τ | t̂)]+ e−x(τ | t̂)2 , wopt = 0.90 . (3.12)

The approximation for the firing rate is valid only for stimuli far below thresh-
old, i.e. x(τ | t̂)� 1.

1This follows from Eq. (2.28) since 〈τ〉 ≈ 2
∫ x

0
ew

2
dw for x = (1−µ)/σ � 1 by virtue of

the asymptotic expansion of the error function erf z ∼ 1 − e−z2

z
√
π

[

1 +O(|z|−z)
]

for z → ∞;
Gradsteyn and Ryzhik (1980).
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3.2 Method-of-images approximation

Bulsara et al. (1996) suggest to employ the method of images to obtain an ap-
proximation to the first-passage-time density of the Ornstein-Uhlenbeck pro-
cess. With Pf (v, t |w, s) of Eq. (2.30) being the solution of the Fokker-Planck
equation (2.23a) with natural boundaries, the function

Pb
(

v, τ | vR, t̂
)

= Pf
(

v, t̂+ τ | vR, t̂
)

− eψ(τ | t̂)Pf
(

v, t̂+ τ | 2Θ− vR, t̂
)

(3.13)

with2

ψ(τ | t̂) =
2

η2(τ)
(vR −Θ)

[

Θ(1− e−τ )− v0(τ | t̂) + vR e−τ
]

e−τ (3.14)

will fulfill the boundary condition at the threshold Θ, Eq. (2.23c), and the
initial condition, Eq. (2.23b), for v ≤ Θ. η2(τ) is the variance of Pf , see
Eq. (2.32). The threshold Θ = 1 is explicitly given here for clarity. Since Pf is
a solution of the linear Fokker-Planck equation (2.23a), Pb will be a solution
if and only if ψ(τ | t̂) is independent of τ . This condition yields a differential
equation for the noise-free potential3

ψ̇(τ | t̂) = v̇0(τ | t̂)(1− e−2τ ) +
[

Θ− v0(τ | t̂)
]

(1 + e−2τ ) + 2(vR −Θ) e−τ = 0 .

The dot denotes differentiation with respect to τ . This equation yields

v0(τ | t̂) = vR e−τ +Θ(1− e−τ ) + 2c sinh τ

requiring as input current

I(τ) = Θ + 2c eτ , c ∈ R . (3.15)

This input is rather peculiar: for c 6= 0, Eq. (3.15) requires that the input
be reset to I(0) = Θ after every spike—a rather implausible condition. But
exponentially growing input is highly implausible anyways, leaving c = 0, and
thus I(t) = Θ, as the only relevant solution. This is exactly the case solved by
Sugiyama et al. (1970) using the method of images; it is used in Appendix A
to test the algorithm proposed in Chapter 2.2. For the biologically interesting
case of time-dependent input, Pb will at best be an approximate solution.

Inserting Pb
(

v, t | vR, t̂
)

into Eq. (2.25) yields the method-of-images approx-
imation (MOI) to the first-passage-time density

ρb(τ | t̂) =
σ2

√
2πη3(t)

(Θ− vR) e−τ exp

{

− [Θ− v0(τ | t̂)]2

2η2(τ)

}

+
ψ̇(τ | t̂)

2
eψ(τ | t̂)

[

1 + erf
Θ− v0(τ | 2Θ− vR, t̂)

√

2η2(τ)

]

. (3.16)

2The term vR e−t is missing in Eq. (11) of Bulsara et al. (1996).
3The corresponding Eq. (13) of Bulsara et al. (1996) is wrong.
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In contrast to the hazard models, neither the positivity nor the normalization
of ρb is assured.

3.3 Evaluation

The quality of the approximations defined above is assessed by comparing
them to the Ornstein-Uhlenbeck neuron introduced in Chapter 2. Since the
dynamics of this neuron model are fully characterized by the conditional inter-
spike-interval density, the deviation of the ISI densities ρmod of the models
from the corresponding density ρ for the OU neuron as given by Eq. (2.33)
will be the foremost criterion. For the method-of-images approximation, the
violation of positivity and normalization will be evaluated as well.

The deviation of the ISI densities is measured by the relative integrated
mean square error (rIMSE)

E =

∫∞
0

dτ [ρ(τ | t̂)− ρmod(τ | t̂)]2
∫∞

0
dτ ρ(τ | t̂)2

. (3.17)

The denominator ensures that E is a scale-invariant error measure (Scott
1992). Figure 3.5 shows some examples and should give an intuitive idea
of the error associated with various values of E. Other measures for the dis-
tance of probability densities, like the Kullback-Leibler divergence (Cover and
Thomas 1991), were explored and lead to similar results.

The results presented here were obtained from a set of 14400 periodic and
the same number of aperiodic stimuli as defined in Chapter 2.3. Base currents
were in the range 0.55 ≤ µ ≤ 1.2, stimulus amplitudes approximately 0.14(1−
µ) < q < 2.1(1 − µ), and stimulus/cutoff frequencies 0.02π ≤ Ωc ≤ 2π. For
each set of these parameters, five phases were chosen randomly from [ 0, 2π) for
periodic stimuli, and five different random stimuli generated for the aperiodic
case. The reset potential was vR = 0 throughout. Each stimulus was tested
at eight noise amplitudes, randomly chosen to yield a uniform distribution of
relative distances from threshold within 0.1 < |ε| < 3. Approximately two-
thirds of all stimuli were subthreshold.

Some stimuli were excluded from the analysis. Rejection was based solely
on the ISI densities computed for the diffusion approximation. Specifically,
stimuli were excluded if the firing probability was so low that their norm was
insufficient (

∫ T

0
ρ(τ) dτ < 0.8), where T was 20 stimulus periods for periodic

and 409.4 for aperiodic stimuli. Furthermore stimuli were rejected if the nu-
merical algorithm was unstable at the time resolution chosen. For some of these
cases it was verified that—with appropriate discretization—the algorithm did
converge. The instabilities were caused by very steep threshold-crossings of the
membrane potential in combination with small noise. These instabilities did
not affect subthreshold periodic stimuli. After defective stimuli were excluded,
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Figure 3.5: Approximations to the Ornstein-Uhlenbeck neuron: (a, b) ISI densities in
response to the aperiodic input shown as cyan line in (d). Noise amplitudes are (a) σ = 0.2
and (b) σ = 0.1 with relative distances from threshold ε = −0.44 and ε = −0.88. The black
line is the density for the OU neuron, red the Arrhenius, blue the Arrhenius&Current, green
the linear ramp, and brown the Tuckwell approximations. Errors range from E = 0.016
for the Arrhenius&Current model in (a) to E = 0.2 for the Tuckwell approximation in
(b). (c) Hazard functions pertaining to the ISI densities of (b). The hazard for the OU
neuron (black) was obtained from the ISI density via Eq. (3.3). This hazard, as the A&C
hazard, follows the time course of the input I(t) rather than that of the noise-free potential
v0(t | 0). (d) Input I(t) (cyan), and noise-free potential v0(t | 0) (pink). The dashed line is
the threshold. Stimulus parameters: base current µ = 0.85, amplitude q = 0.141, cut-off
frequency Ωc = π.
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Figure 3.6: Distribution of model parameters from individual optimization of models
on 4084 aperiodic and 2350 periodic stimuli: (a) Arrhenius, (b) Tuckwell, (c, d) Arrhe-
nius&Current, (e, f) Abeles and (g, h) linear ramp model. For the models with two param-
eters, the distribution of w1 is given in the left, that of w2 in the right column. The dashed
line marks the median, i.e. the value of wopt.
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data from 8714 periodic stimuli (out of these 4706 subthreshold stimuli) and
12689 aperiodic stimuli (8027 subthreshold) are presented here.

3.3.1 Optimization

As discussed in the introduction, the subthreshold regimes appears preferable
for neuronal information processing. Therefore, the model parameters were
optimized on the subset of non-defective subthreshold stimuli. This subset
was split into an optimization and a validation set. For each one of these
stimuli that parameter w or parameter tuple (w1, w2) was determined that
minimized the error E. Since the gradient of E with respect to w would
be extremely tedious to compute, the minimum was determined using direct
search algorithms (The MathWorks, Inc. 1999). The search converged in all
cases.

The distributions of the parameters obtained in this manner are shown in
Fig. 3.6, together with the optimal parameter choices wopt. The latter were
chosen as the medians of the distributions. The parameters scatter rather
strongly about the median with the exception of the Arrhenius&Current model
[Fig. 3.6(c), (d)]. This indicates that all other models may be adapted to
individual stimuli, but that they will not perform well with fixed parameters
across a wide range of stimuli.

Evaluating the error E over both the optimization and the validation set
with the fixed parameters wopt yielded identical results. Overfitting can there-
fore be excluded.

3.3.2 Performance

Figure 3.7 displays the relative error E vs. the relative threshold-distance ε
for all approximations over the entire periodic and aperiodic stimulus sets.
The method-of-images approximation is clearly the worst of all models, with
errors several orders of magnitude above those of the hazard models. It behaves
particularly bad for stimuli far below threshold, while it is better than the other
models for some stimuli close to threshold. As shown in Fig. 3.8(a), the error
for the MOI approximation drops ∼ σ−2.5 with the noise amplitude, i.e. the
method of images yields a high noise approximation. This is easily explained:
As shown in Section 3.2, the MOI Ansatz Pb(v, τ |w, s) will be a solution
of the Fokker-Planck equation (2.23a) if eψ(τ | t̂) is constant. From Eqs. (3.14)

and (2.32) one has eψ(τ | t̂) ≈ 1− 2
√

2
σ

e−τ for t, σ � 1, whence the required time-
independence is attained the better, the larger σ. Figures 3.8(b) and 3.8(c)
demonstrate that the error of the MOI approximation correlates strongly with
violations of the normalization condition

∫

ρ(t) dt = 1, and, albeit less clearly,
with the required positivity ρ(t) ≥ 0. The conclusion is that the method of
images does not yield a robust, and therefore useful, approximation to the
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Figure 3.7: Relative error E vs. relative distance from threshold ε for (a) 8714 periodic
and (b) 12689 aperiodic stimuli. The models are Arrhenius (red), Arrhenius&Current (blue),
Abeles (gold), linear ramp (green), Tuckwell (brown) and method-of-images (cyan). Note
the logarithmic ordinate.

Ornstein-Uhlenbeck neuron. Bulsara et al. (1996) applied the approximation
in the limit of strong noise (σ � 0.1).

Figure 3.9 displays the relative errors of the hazard models on a larger scale.
Several points may be glanced from this figure: First of all, the scatter of errors
is larger for aperiodic than for periodic stimuli, particularly for stimuli far be-
low threshold. The reason for this is that the threshold distance ε characterizes
aperiodic stimuli only in a root-mean-square sense. For suprathreshold stimuli,
the A&C model scores the lowest errors, while the Tuckwell model fares worst.
Arrhenius, Abeles and linear ramp models are roughly tied. For subthreshold
stimuli not too far below threshold (ε & −1.5), the ranking is roughly the
same as above threshold, but errors tend to be smaller. For periodic stimuli
far below threshold, the picture is somewhat different: the Arrhenius approxi-
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Figure 3.8: (a) The relative error E of the method-of-images approximation correlates
strongly with the noise amplitude σ and (b) with norms of the ISI density greatly exceeding
unity. (c) The correlation of the error to negative minima of the density is weaker. The
yellow line marks the least-squares fit E ∼ σ−2.5 in (a), and the correct values of norm (= 1)
and minimum (= 0) in (b) and (c), respectively. Red dots represent periodic, blue aperiodic
stimuli.

mation now excels, since the assumptions leading to it are nearly fulfilled: the
membrane potential density is virtually undistorted by the distant threshold,
and transients in the stimuli shift only the exponentially small tail of the den-
sity across threshold. In this regime, the A&C model suffers from its small
coefficient wopt

1 = 0.70 for the diffusion term, compared to wopt = 0.95 for the
Arrhenius Ansatz. The linear model performs rather badly for subthreshold
input. In particular, for ε < −1.81, one has x(τ | t̂) > 1.81 = −wopt

1 and thus
ρlin(τ | t̂) = 0 everywhere, whence E = 1 in this range. This cut-off causes the
rise of the error for the linear model with increasing threshold-distance as well.

The error of the Tuckwell model is surprisingly large for periodic stimuli far
below threshold, given that the firing rate approximation used in Eq. (3.11) is
valid in precisely this regime. This is a consequence of the choice wopt = 0.90
for the model parameter, as is demonstrated in Fig. 3.10. It compares the Tuck-
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Figure 3.9: Relative error E as in Fig. 3.7, but without the method-of-images data for
greater clarity. The models are Arrhenius (red), Arrhenius&Current (blue), Abeles (gold),
linear ramp (green), Tuckwell (brown).

well model as defined in Section 3.1.5 to the parameter-free Tuckwell model
hTuck = [ν(τ | t̂)]+ studied by Plesser and Gerstner (1999). This model scores
smaller errors for stimuli far below threshold, but leads to larger errors once
ε & −0.75. It corresponds to a parameter value of w = 1/

√
π ≈ 0.56. Indeed,

the parameter optimization process for the Tuckwell model, see Fig. 3.6(b),
indicates that a few hundred of the optimization stimuli would benefit from
this choice.

Another interesting point to glance from Fig. 3.10 is that the Tuckwell
model may be fine-tuned to perform well within a small range of threshold
distances ε ≈ −0.5, but that the error is quite large outside of this range. The
Arrhenius model, on the other hand, does well over the entire range. This
indicates that the factor [x(τ | t̂)]+, which is the only difference between the
Arrhenius and the Tuckwell models, is the cause of the problem: it severely
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Figure 3.10: Relative error E vs. distance from threshold ε for the Arrhenius (red), Tuck-
well (brown) and parameter-free Tuckwell model (sand) of Plesser and Gerstner (1999) for
periodic stimuli.

reduces the hazard as the noise-free potential approaches the threshold, cf.
Fig. 3.1(a).

Results on all approximations to the Ornstein-Uhlenbeck neuron are sum-
marized in Fig. 3.11 and Table 3.1. The former gives the cumulative distribu-
tion of the errors E shown in Fig. 3.7, distinguishing sub- and suprathreshold,
and periodic and aperiodic stimuli. The Arrhenius&Current approximation
scores significantly smaller errors than all other models across all classes of
stimuli, with an error E < 0.09 for 95% of all stimuli tested. In stark con-
trast, the method of images yields the worst approximation overall, although
it surpasses the hazard models for a small proportion of suprathreshold stimuli
(. 20%). The Arrhenius and the Abeles model are tied for second rank, again
across all stimulus classes. Since the hazard functions of these two models
are nearly identical for v0(τ | vR, t̂) below threshold [see Fig. 3.1(a)], this vin-
dicates the assumption that the suprathreshold portion of the hazard is rather
irrelevant. The linear ramp model ties with the Tuckwell model for third rank
for subthreshold stimuli, while it is nearly as good as Arrhenius and Abeles
models for suprathreshold stimulation.

3.4 Summary

The Arrhenius&Current model provides an excellent approximation to the
Ornstein-Uhlenbeck neuron and is expected to become a valuable tool for the
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Figure 3.11: The Arrhenius&Current model is a reliable approximation to the Ornstein-
Uhlenbeck neuron: Cumulative distributions P (E) of the relative error periodic (top) and
aperiodic stimuli (bottom). Figures on the left are for subthreshold stimuli, those on the
right for suprathreshold. The models are Arrhenius (red), Arrhenius&Current (blue), Abeles
(gold), linear ramp (green), Tuckwell (brown) and method-of-images (cyan). The dashed
lines mark the 10th, 50th and 90th percentiles. Note the logarithmic abscissa.

per, sub per, sup aper, sub aper, sup total

Arrhen. 0.184 0.474 0.434 0.510 0.440

A&C 0.067 0.096 0.083 0.099 0.090

Abeles 0.184 0.486 0.435 0.506 0.448

ramp 0.519 0.533 1.096 0.577 0.633

Tuckw. 0.250 0.890 0.865 0.913 0.873

MOI 23643.253 4166.456 8419.079 6428.771 8550.834

Table 3.1: 95th percentile of the approximation error E for the different stimulus classes
and for all classes combined (far right). Errors of the the Arrhenius&Current approximation
exceeded E = 0.09 for only 5% of all stimuli tested.
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exploration of neuronal dynamics. It is employed in Chapter 5.3 to analyze how
stochastic resonance in the OU neuron depends on the stimuli presented. It
has already found applications in the analysis of network dynamics (Herrmann
and Gerstner 1999). The Arrhenius and Abeles models provide reasonable
approximations as well, thus justifying earlier studies based on these models
a posteriori (Gerstner and van Hemmen 1992; Gerstner 1995; Abeles 1982;
Spiridon and Gerstner 1999). The method of images, on the other hand, will
yield useful results only under peculiar conditions.

The Arrhenius&Current model may be of advantage even in numerical stud-
ies, e.g. when fitting model parameters to experimental data, since the compu-
tational effort required to obtain the interspike-interval density via Eq. (3.2)
grows only linearly in the number of function values desired, as compared to
quadratically for the Ornstein-Uhlenbeck neuron. The reduction in computer
time can be dramatic.

Finally, there is some experimental evidence indicating that the Arrhe-
nius&Current model may be justified in its own right and not merely as an
approximation to the Ornstein-Uhlenbeck neuron. Glantz (1999) has found
that the firing rate of sustaining fibers of the crayfish eye is a function of both
the subthreshold membrane potential and its derivative, just as for the hazard
in the Arrhenius&Current model.



Chapter 4

Spike Trains

Neurons convey information to other neurons by sequences of stereotyped ac-
tion potentials. There is mounting evidence that the temporal structure of
these spike trains is an important part of the neural code (Rieke et al. 1997).
Mathematical methods which predict the statistical properties of spike trains
are thus a prerequisite to the exploration of the neural code. Chapters 2 and 3
forged the link between the time-dependent stimulus impinging on a neuron
and the resulting distribution of interspike intervals. This chapter provides
the methods required to infer the global properties of the spike train once the
interspike-interval distributions are known. The methods developed here are
applicable to arbitrary Markovian point processes.

Renewal processes are a subtype of Markov processes particularly amenable
to analysis, since all intervals are identically distributed. Several authors have
therefore opted to approximate spike trains in response to periodic stimulation
as renewal processes (Plesser and Tanaka 1997; Bulsara et al. 1996). It is shown
in Section 4.2 that this approximation will be valid only for peculiar stimuli.
If, on the other hand, the stimulus is reset after every spike, the resulting spike
train will of necessity be a renewal process. Albeit of little biological relevance,
this regime of constrained stimulation is analyzed in Section 4.3. The spike
intensity is introduced as a statistic of the spike train which is well-suited to
illustrate—and thus understand—the response of neurons to time-dependent
stimulation. It is similar to the post-stimulus time histogram measured in
many neurophysiological experiments.

The Markov chain analysis of spike trains elicited by unconstrained, “nat-
ural” periodic stimulation is exposed in Section 4.4. It exploits the fact that
not only the times at which spikes occur form a Markov process, but the stim-
ulus phases at the spike times as well. The latter process is restricted to the
unit circle and thus analyzed efficiently. It is shown to converge to a unique
stationary distribution regardless of initial conditions (asymptotic stability).
The entrainment of the neuronal firing pattern by periodic stimulation is thus
completely characterized. In addition it is shown that the spike intensity can
be computed quite efficiently from the Markov chain formed by the spike times.
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The most important statistics recorded in neurophysiological experiments
are briefly discussed in Section 4.5 and their relation to the quantities derived
here is established. Section 4.6 presents the essential methods for the inves-
tigation of stochastic resonance: The power spectral density of spike trains is
derived from the interspike-interval densities via renewal process or Markov
chain analysis for constrained and unconstrained stimulation, respectively.

4.1 Definitions

Several terms and quantities that will be used in the analysis of spike trains
are defined here before embarking on the analysis itself.

The spike train has already been defined in Chapter 2.1.3 as the ordered
sequence of spike times

t = [t1, t2 . . . ] , t0 ≡ 0 < t1 < · · · .

The time origin is fixed at the time t0 ≡ 0 of an arbitrary spike to avoid
complications that arise if the interval between the beginning of a measurement
and the first spike is not an interspike interval. The reference spike is not part
of the spike train.

The probability for a particular train of n spikes to occur, the spike train
density, is given by

Υn(t) = Prob

{

After reference spike at t0 = 0, the
neuron fires at 0 < t1 < . . . < tn.

}

. (4.1)

The number of spikes is arbitrary, but will assumed to be finite to avoid un-
necessary complication; this is well justified, since for any neuron the firing
rate, and thus the number of spikes fired in a finite interval, is bounded. All
statistical properties of the spike train, and thus of the neural response to a
stimulus I(t) can be computed from the spike train density. It is important to
keep in mind that Υn(t) is not invariant under translations in time, unless the
stimulus I(t) is translated in the same way. To make this dependence on the
stimulus explicit, one may want to write Υn(t | I(t), t0), but this is not done
here for ease of notation.

The neuron models introduced in the previous chapters yield only the con-
ditional interspike-interval densities ρ(tk − tk−1 | tk−1), so that Υn(t) has to be
obtained from these. Since the membrane potential of the neuron is reset to a
fixed level vR after each spike, the neuron has no memory reaching back beyond
the most recent spike. If the noise is without memory as well, i.e. Poissonian
as in Stein’s model or white Gaussian as in the Ornstein-Uhlenbeck neuron,
all interspike intervals will be statistically independent. They may still depend
on the times at which the intervals begin, as time-invariance is broken by the
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stimulus. The sequence of spike times is thus a Markov process and the spike
time density may be decomposed as

Υn(t) =
n
∏

k=1

ρ(tk − tk−1 | tk−1) . (4.2)

If the reset were not to a fixed potential vR, but random (Bugmann et al. 1997),
the ISI densities had to be conditioned on the reset potential in addition to the
spike time tk−1 to allow for the above decomposition. If the noise had finite
correlation time, but were still Markovian,1 the status of the noise process at
tk−1 would be required as a further condition. For non-Markovian noise, no
decomposition as given by Eq. (4.2) appears possible.

The spike train density Υn(t) is an n-dimensional probability density and
thus difficult both to compute and to interpret. More convenient are some of
its marginal densities, namely the spike time density (STD)

qk(t) = Prob
{

In train t, the kth spike occurs at time t.
}

(4.3)

=

∫

· · ·
∫

Υn(t1, . . . , tk−1, t, tk+1, . . . , tn)
∏

m6=k

dtm ,

the joint spike time density (jSTD)

qj+k,j(t, s) = Prob

{

In train t, the j + kth spike
occurs at t and the jth at s.

}

(4.4)

=

∫

· · ·
∫

Υn(. . . , tk−1, s, tk+1, . . . , tj−1, t, tj+1, . . . )
∏

m6=j,k

dtm ,

and the conditional spike time density (cSTD)

qk(t | s) = Prob

{

In train t, the kth spike after
a spike at s occurs at t.

}

= qj+k,j(t, s)/qj(s) . (4.5)

The last two densities are zero if t ≤ s for k > 0. The cSTD depends only
on the number k of spikes between the spikes at s and t, because the train is
a Markov process. Finally, the firing activity of a pool of neurons or across a
number of repetitions of an experiment is given by the spike intensity2

q(t) = Prob{Any spike occurs at t.} =
∞
∑

k=1

qk(t) . (4.6)

1E.g. exponentially correlated noise generated by an Ornstein-Uhlenbeck process.
2The spike intensity should not be confused with the conditional intensity (bedingte In-

tensität) studied by Rotter (1994), which is conditional on the firing history of the neuron.
The intensity defined here is averaged over all possible spike trains following a reference
spike at t = 0. It is closely related to the population activity of an ensemble of independent
neurons (Gerstner 1999b).
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The latter is not a probability density. Instead, the integral of q(t) over an
interval [ a, b ] gives the average number of spikes that will occur during this
time across a large number of experiment repetitions, or across a large pool
of independent, identical neurons. Closed expressions for these functions in
terms of the interspike-interval densities will be derived below.

Stimuli can be classified into four regimes which different mathematical
treatment:

• The spike train is a proper renewal process if the stimulus is constant,
I(t) = µ. This case is of little relevance to neuronal signal processing,
and is not pursued further in this work. It can be treated with the
standard methods of renewal theory.

• The same time-dependent stimulus I(t) is presented during each interval,
i.e. the stimulus is reset after each spike. All intervals will thus have
identical ISI densities, and the spike train is again a renewal process.
This regime will be called constrained stimulation, since the stimulus
presentation is constrained by the activity of the neuron.

• Stimulation with an arbitrary, time-dependent stimulus I(t) will be called
unconstrained stimulation. It is the regime most relevant to neurobiol-
ogy. The spike train is no renewal process in this case.

• The spike train might be sufficiently similar to a renewal process even
under unconstrained stimulation, e.g. if the stimulus varies extremely
rapidly on the timescale of the neuron, or if the noise is very strong
compared to the modulation amplitude of the stimulus. The neuron is
said to fire in the approximate renewal regime. It may be analyzed in the
framework of renewal theory. The validity of the renewal approximation
is tested in Section 4.2.

A brief remark on terminology is in order. In a recent paper on the sources
of periodic input to integrate-and-fire neurons, Lánský (1997) introduced the
terms “endogenous” and “exogenous” stimulation for the constrained and un-
constrained regimes defined above; this terminology has also been used by
Shimokawa et al. (1999a). Lánský motivated his choice as follows: exogenous
stimulation enters Stein’s model (Eq. 2.4) through time-dependent pulse rates
λ(t), which cannot be reset upon a spike. Endogenous stimulation, in con-
trast, results from varying pulse amplitudes α(t), which are of postsynaptic
origin and thus can be reset. This terminology has two disadvantages: First,
both types of modulation lead to exactly the same form of the diffusion ap-
proximation (Chapter 2.1), and a nomenclature derived from a “model behind
the model” is unsatisfactory. Second, neurons can autonomously generate fir-
ing patterns which are decidedly non-renewal, whence the implication of an
internal origin of modulation evoking renewal spike trains is misleading. An
example will be given in Chapter 5.2.
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4.2 Approximate renewal trains

If the response of the integrate-and-fire neuron to unconstrained stimulation
were such that it could approximately be treated as a renewal process, the
analysis would be simplified significantly. This assumption is implied in the
work of Plesser and Tanaka (1997) and Bulsara et al. (1996), but its validity
has never been tested systematically before.

The decision whether renewal analysis is appropriate should be based on ex-
perimental considerations. In a typical electrophysiological experiment, rarely
more than a few thousand spikes are recorded per neuron and stimulus type,
as the experiment duration is limited and the focus is usually on testing many
neurons and various stimuli; exceptions are mostly found in insect neurophys-
iology (Rieke et al. 1997). Thus, if statistical tests on a train of, e.g., 10000
spikes generated by the Ornstein-Uhlenbeck neuron under unconstrained stim-
ulation, indicate significant deviation from a renewal process, the spike train
may not be treated as a renewal process.

Cox and Lewis (1966, Ch. 6.4) suggest the rank product-moment statistic

R1 =
N−1
∑

j=1

rk(τj) rk(τj+1) (4.7)

to test whether a sequence of intervals forms a renewal process. N is the num-
ber of intervals in the sample, and rk(τj) is the rank of interval j in an ordered
list of interval lengths. Under the null hypothesis of a renewal process, i.e.
when interval durations are not correlated to each other, R1 is asymptotically
normal with mean3 and variance

µN =
(N − 1)(N + 1)(3N + 2)

12
,

σ2
N =

(N + 1)(5N6 + 21N5 + 501N4 − 823N3 + 1102N2 − 68N + 240)

720(N − 2)(N − 3)
.

The hypothesis that the spike train is a renewal process is thus rejected at
significance level α if erfc |(R1 − µN)/σN | < α.

This test is applied to sinusoidal stimuli as defined by Eq. (2.42) for a wide
range of frequencies Ω and noise amplitudes σ. Spike trains were obtained
by direct integration of Eq. (2.20) using the algorithm given in Appendix B.
Results are shown in Fig. 4.1. The response of the neuron may not be approx-
imated by a renewal process in the large part of the parameter space marked
white. The reason for this can be glanced from Fig. 4.1(d): In most stimulus
periods, a small number of spikes is fired in rapid succession. These bursts are
separated by intervals nearly as long as a stimulus period. Thus two types of

3The expression in Cox, p. 166, has a prefactor of 1/2 instead of 1/12, which appears to
be a typographical error.
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Figure 4.1: The response to unconstrained periodic stimulation is a renewal process under
peculiar conditions. Center: Rank product-moment test of the renewal hypothesis on trains
of 10000 spikes in response to unconstrained periodic stimuli of different frequencies Ω and
noise amplitudes σ. White indicates rejection of the hypothesis, i.e. non-renewal behavior,
black acceptance. Grey patches mark acceptance by the rank product-moment test, but
rejection by the serial correlation test (Cox and Lewis 1966, Ch. 6.4). Small figures: sample
stimuli and spike trains for different stimuli as indicated by the arrows. (a) Renewal case
(iii), (b) case (ii), (c) case (i), and (d) typical non-renewal spike train; see text. Stimulus
amplitudes shown are ∼ 1/

√
1 + Ω2 and frequencies are illustrative. Other parameters:

µ = 0.9, q = 0.1, φ0 = 0.
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intervals—intra- and inter-burst—exist, which quite obviously have very dif-
ferent ISI densities. The spike train cannot be treated as a renewal process
therefore.

The part of the parameter space that allows for the renewal approximation
can be subdivided into three regimes:

(i) Weak noise, low frequency phase-locking, Fig. 4.1(c): Spikes are locked
to a stimulus phase φopt with very small jitter, entailing the required
reset if the initial phase of the stimulus is φ0 = φopt, cf. Fig. 4.2. Since
φopt shifts with noise amplitude, this condition cannot be fulfilled for
fixed φ0; see Fig. 5.6(c), p. 89.

(ii) High frequency, Fig. 4.1(b): Due to the low pass property of the integra-
tor neuron, the modulation of the subthreshold membrane potential is
dampened ∼ 1/

√
1 + Ω2 (cf. Eq. 2.43). This damping decouples the fir-

ing, and thus the ISI densities, from the stimulus. The neuron essentially
converts constant input to random output.

(iii) Strong noise, Fig. 4.1(a): The noise dominates the stimulus, decoupling
stimulus and response as in case (ii).

Cases (ii) and (iii) are not very interesting biologically, since they attain re-
newalness by suppressing the signal, while case (i) applies only to periodic
stimuli in a regime of rather low firing rates. In conclusion, the approximation
as a renewal process of the firing pattern of a neuron receiving unconstrained
stimuli is valid only in cases of little practical relevance.

4.3 Constrained stimulation

The main motivation to discuss constrained stimulation is its mathematical
elegance, and because it may serve as approximation to the true behavior of
the neuron in some cases, see Section 4.2. From a biological point of view, it is
highly questionable, since the author is unaware of any experimental evidence
for a neuron driven by processes that are reset after every spike.

In the context of constrained stimulation, the stimulus I(t) is the nominal
stimulus, which may be any smooth function. Figure 4.2 demonstrates the
effect of the reset after each spike on the effective stimulus that actually drives
the neuron. Under favorable conditions, effective and nominal stimulus will
be very similar, and the output of the neuron will reflect the periodicity of the
nominal stimulus [Fig. 4.2(a)]. In other cases, though, nominal and effective
stimulus may differ markedly [Fig. 4.2(b)].

In the constrained case, the interspike-interval density ρ(τ) is the same for
all intervals regardless of the time at which they begin. The spike train density
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Figure 4.2: The effect of the stimulus reset depends strongly on the initial stimulus phase
φ0: (a) Sinusoidal stimulus with initial phase φ0 = 0. Spikes are elicited around stimulus
maxima, and the reset is nearly imperceptible. The neuron effectively receives sinusoidal
input. (b) The same stimulus but for φ0 = π/2. The effective stimulus is now very different
from the nominal sinusoid. Parameters: µ = 0.9, q = 0.1, Ω = 0.1π, σ = 0.01.

of Eq. (4.2) thus simplifies to

Υn(t) =
n
∏

k=1

ρ(tk − tk−1) . (4.8)

The spike time density is obtained by iterated convolutions

qk(t) =

∫ t

t0

ρ(t− tk−1)qk−1(tk−1) dtk−1 , q1(t) = ρ(t) (4.9)

and Laplace transformation yields

q̄k(s) = ρ̄k(s) with ρ̄(s) =

∫ ∞

0

ρ(t) e−st dt . (4.10)

The Laplace transform of the spike intensity is then a geometric sum in ρ̄(s)
so that (Cox and Miller 1965)

q̄(s) =
∞
∑

k=1

q̄k(s) =
∞
∑

k=1

ρ̄k(s) =
ρ̄(s)

1− ρ̄(s)
, |s| > 0 . (4.11a)

Franklin and Bair (1995) have shown that at the origin

lim
s→0

q̄(s) =
〈

∆τ 2
〉

/ 〈τ〉 − 1 = C2
v − 1 (4.11b)

for a mean ISI length 〈τ〉 with variance 〈∆τ 2〉 and corresponding coefficient
of variation Cv (see Section 4.5). The spike intensity q(t) is known as renewal
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Figure 4.3: Constrained periodic stimulation does not elicit periodic firing: (a) Renewal
density (solid) and ISI density (dash-dotted) for constant stimulus. The renewal density
quickly becomes stationary [µ = 0.95, σ = 0.1]. (b) The same for a sinusoidal stimulus
with period T = 40. The renewal density shows a complex structure which smears out only
slowly [µ = 0.95, q = 0.05, Ω = 0.05π, φ0 = 0, σ = 0.02].

density in the theory of point processes. It can be obtained from Eq. (4.11a)
by inverse Laplace transformation.

Figure 4.3 gives examples for constant and sinusoidal stimulation. It might
come as a surprise that the renewal density is not constant even for a constant
stimulus, which should give rise to stationary behavior. But homogeneity in
time has been broken by locking t0 = 0 to a spike. In consequence, q(t) ≈ ρ(t)
for small t, and the renewal density becomes stationary only at later times as
the effect of the reference spike decays.4 Periodic stimulation may evoke com-
plex renewal densities, as shown in Fig. 4.3(b): the broad peak-trough struc-
ture with a period slightly shorter than the nominal stimulus period T = 40

4This is known as an ordinary renewal process; all intervals are identically distributed.
Equilibrium renewal processes are obtained if the distribution of the interval between t = 0
and the first spike is the forward recurrence time distribution. They have flat renewal
densities; see Cox and Miller (1965, Ch. 9).
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is caused by the “periodic” peak of the ISI density at t ≈ 35. The superim-
posed fine structure arises from the sharp “refractory” peak of the ISI density
at τ ≈ 4.5, but is quickly washed out. The observed complex structure has
been verified by simulated spike trains (see Appendix B). At larger times, the
spike intensity smoothes markedly. Indeed, one can show that q(t) → 1/ 〈τ〉
for large times (Cox and Miller 1965). This is a consequence of the stimulus
reset: Since the neuron fires at random times, the mean effective stimulus at
large times is a superposition of randomly shifted copies of I(t), equivalent to
constant input.

4.4 Unconstrained stimulation

The biologically most relevant stimulus regime, unconstrained stimulation that
may not be approximated as a renewal process, poses considerable technical
difficulties. Each interspike interval has a different distribution ρ(τ | t), condi-
tional on the time t of its beginning. Therefore, the spike time density is no
longer given by a sequence of proper convolutions as in Eq. (4.9). Instead, one
has

qk(t) =

∫ t

0

ρ(t− tk−1 | tk−1)qk−1(tk−1) dtk−1 , q1(t) = ρ(t) (4.12)

and likewise for the conditional spike time density

qk(t | s) =

∫

· · ·
∫ t

0

ρ(t− tk−1 | tk−1)ρ(tk−1 − tk−2 | tk−2) . . . ρ(t1 − s | s)
k−1
∏

j=1

dtj .

(4.13)

Because the integration variables tj appear in the conditioning argument of ρ
as absolute time, the spike time densities cannot be obtained via Laplace trans-
forms. Not even the mean ISI duration 〈τ〉 is accessible, as its computation
requires proper weighting of all conditional ISI densities.

If the stimulus is periodic, the Markov process of spike times on the positive
real axis may be reduced to a Markov process of the stimulus phases at which
spikes occur. This process is confined to the unit circle, and is easily charac-
terized by a stochastic (Markov) operator. Asymptotic results for the latter
provide the desired information about the stationary firing patterns. The dis-
cretization of the operator to a stochastic matrix is straightforward, leading to
efficient numerics for the resulting Markov chain. The Markov operator and
pertaining results are introduced below, and the Markov chain is discussed in
Section 4.4.2. The spike intensity is obtained from the infinite Markov chain
in time in Section 4.4.3.
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4.4.1 Continuous phase: Markov kernel

Let T be the period of the stimulus, i.e. the smallest T with I(t + T ) = I(t)
for all t, and define the stimulus phase as

ψ = Ω̂t mod 2π , (4.14)

with the pseudo-frequency Ω̂ = 2π/T . This definition of phase is entirely gen-
eral: In particular, the stimulus may be an arbitrary superposition of sinusoids
with rational periods Tj ∈ Q. The stimulus period is then the least common

multiple of the individual periods, whence the term pseudo-frequency for Ω̂.
Since the conditional ISI densities depend on absolute time only through the
stimulus (compare Eqs. 2.33, 2.31), the periodicity of the stimulus carries over
to the conditioning argument of the conditional ISI density. With t̂ = nT+ψ/Ω
one has

ρ(τ | t̂) = ρ(τ |nT + ψ/Ω) = ρ(τ |ψ/Ω) ≡ ρ(τ |ψ) . (4.15)

The last equality above is a minor re-definition of ρ to obtain a more compact
notation. Thus, the conditional ISI densities for ψ ∈ [ 0, 2π) suffice to describe
neural spike trains. Furthermore, it follows from Eq. (4.15) that the sequence
of spike phases

ψ = [ψ1, ψ2, . . . ] , ψk = Ω̂tk mod 2π , tk ∈ t (4.16)

is a Markov process just as the spike train t itself; ψ0 = 0 is the phase of the
reference spike. In analogy to the spike time density, the spike phase density
(SPD) is defined as

χk(ψ) = Prob
{

In train t, the kth spike occurs at phase ψ.
}

=
1

Ω̂

∫ ∞

0

qk(t)δ(ψ − Ω̂t mod 2π) dt

=
1

Ω̂

∞
∑

n=0

qk

(

nT +
ψ − ψ0

Ω

)

.

(4.17)

The Markov process ψ formed by the spike phases is mathematically much
more manageable than the full spike train t, as it is restricted to [ 0, 2π). The
evolution of the spike phase density is captured by the Markov kernel

T (ψ |φ) = Prob{A spike at phase φ is followed by a spike at phase ψ.}

=
1

Ω̂

∫ ∞

0

ρ(τ |φ)δ(ψ − [Ω̂τ + φ] mod 2π) dτ

=
1

Ω̂

∞
∑

n=0

ρ

(

nT +
ψ − φ

Ω̂

∣

∣

∣

∣

φ

)

.

(4.18)
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Figure 4.4: Construction of the Markov kernel: (a) Conditional ISI densities in response
to a sinusoidal stimulus for phases φ = −π/4 (solid) and φ = π/4 (dash-dotted). The
conditional ISI density for φ = −π/4 has a refractory peak at τ ≈ T/4, and two periodic
peaks near T and 2T , while for φ = π/4, only periodic peaks exist. (b) Same densities
as in (a), but vs. stimulus phase ψ = Ωτ + φ mod 2π. All periodic peaks are at the same
location with respect to phase, and the refractory peak is clearly set apart. The kernel value
T (ψ |φ) is obtained by summing the contributions from all periods at phase ψ for given φ.
Other parameters: µ = 0.9, q = 0.1, Ω = 0.1π, σ = 0.02.

The series above converges, since the conditional ISI density is normalized,
implying ρ(τ |ψ) < c/τ 1+α for τ →∞ and some α > 0, so that the MacLaurin-
Cauchy criterium is fulfilled.5 Intuitively, the kernel value T (ψ |φ) is obtained
by summing across all periods the probability of firing at phase ψ for an interval
beginning at phase φ as displayed in Fig. 4.4. Note that the probability to fire
at a certain phase may be qualitatively different in different stimulus periods.

By construction, the Markov kernel is a probability density in its first
argument ψ conditional on the second φ, i.e.

∫ 2π

0

T (ψ |φ) dψ = 1 and T (ψ |φ) ≥ 0 . (4.19)

Such kernels are called stochastic kernels. For arbitrary probability densities
f(ψ) on [ 0, 2π), i.e. functions with f(ψ) ≥ 0 and

∫ 2π

0
f(ψ) dψ = 1, the stochas-

tic kernel T defines an integral operator via

(T f)(ψ) ≡
∫ 2π

0

T (ψ |φ) f(φ) dφ . (4.20)

If follows immediately from Eq. (4.19) that T f is again a density. Therefore T
is a Markov operator mapping probability densities defined on [ 0, 2π) onto each

5Since ρ(τ |ψ) = 0 for τ < 0, the summand n = 0 is well-defined for ψ < φ.
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other. Markov operators are a generalization of Frobenius-Perron operators
and have been studied intensely in the field of chaotic dynamics (Lasota and
Mackey 1994).

The evolution of the spike phase density is thus given by

χk+1(ψ) = T χk(ψ) = T k+1χ0(ψ) (4.21)

where the initial distribution χ0(ψ) is chosen by the experimentalist: If the
stimulus sets in with a fixed phase φ0 at the reference spike, one has χ0(ψ) =
δ(ψ − φ0); if the onset phase is chosen from a uniform distribution, the initial
distribution is χ0(ψ) = 1/2π. The conditional spike phase density, defined in
analogy to the conditional spike time density, is given by the kernel Tk(ψ |φ)
of the operator T k, i.e.

χk(ψ |φ) = Prob
{

kth spike after spike at φ occurs at ψ.
}

= Tk(ψ |φ) (4.22)

with χ1(ψ |φ) = T (ψ |φ) by definition.
Phase locking of neuronal spikes to a stimulus, as observed in the auditory

pathway, is often characterized by cycle histograms, discrete correlates of the
spike phase density χ (Rose et al. 1967). Such a histogram, compiled from
spike trains recorded over many stimulus periods, will show a well defined
structure—i.e. locking—only if the firing pattern of the neuron is stationary
with respect to stimulus phase, with the possible exception of a brief transient
after stimulus onset. Therefore, the asymptotic behavior of the phase density
χk is of great interest.

Loosely speaking, one would like to show that the sequence of phase den-
sities converges to a stationary density

χk −→ χ(s) = T χ(s) for k →∞ (4.23)

regardless of the initial density χ0. This convergence is more precisely defined
by the notion of asymptotic stability: For a Markov operator T , the sequence
{T k} is said to be asymptotically stable, if a unique density f ∗ on [ 0, 2π) exists
with T f ∗ = f ∗ and

lim
k→∞

∥

∥T kf − f ∗
∥

∥ = 0 for all densities f .

‖x‖ is the L1 norm on [ 0, 2π). The Markov operator T defined by the kernel
T (ψ |φ) of Eq. (4.18) is asymptotically stable by virtue of Corollary 5.7.1 of
Lasota and Mackey (1994), since

∫ 2π

0

inf
φ∈[ 0,2π)

T (ψ |φ) dψ ≥ min
ψ,φ∈[ 0,2π)

T (ψ |φ) > 0 . (4.24)

Strict positivity holds because ρ(τ |φ) is strictly positive, as was proven in
Chapter 2.2. Thus, the spike phase density of the Ornstein-Uhlenbeck neuron
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will converge to a unique stationary density χ(s)ψ for any initial phase density.
This is the first strict proof of asymptotic stability. Other authors had merely
conjectured that Eq. (4.24) held (Tateno et al. 1995; Shimokawa et al. 1999a).

Once the phase density for the kth spike is known, the interspike interval
density for the k + 1st spike is

ρ(k+1)(τ |ψ0) =

∫ 2π

0

ρ(τ |ψ)χk(ψ) dψ (4.25)

and for the stationary state follows

ρ(s)(τ) =

∫ 2π

0

ρ(τ |ψ)χ(s)(ψ) dψ . (4.26)

4.4.2 Discrete phase: Markov chain

To facilitate numerical treatment, the phase axis is discretized. Since the
conditional interspike-interval densities ρ(τ |ψ) are smooth in both time and
phase due to the presence of noise in the input, this discretization will introduce
only minor numerical errors. It is largely equivalent to applying numerical
methods to solve the eigenvalue problem for the Markov operator defined by
Eq. (4.23) (Baker 1977). Using L bins of width ∆ψ (∆ψ = 2π/L), the spike
phase density is replaced by a distribution vector

χ =
(

χ0,χ1, . . . ,χL−1

)tr
, χj =

∫ (j+
1
2

)∆ψ

(j−1
2

)∆ψ

χ(ψ) dψ . (4.27)

Indices run from zero to L−1 for notational convenience. Likewise, the Markov
operator T turns into a matrix T with elements6

Tjk =
1

∆ψ

∫ (j+
1
2

)∆ψ

(j−1
2

)∆ψ

∫ (k+
1
2

)∆ψ

(k−1
2

)∆ψ

T (ψ |φ) dφ dψ ≈
∫ (j+

1
2

)∆ψ

(j−1
2

)∆ψ

T (ψ | k∆ψ) dψ

=
1

Ω̂

∞
∑

n=0

∫ (j+
1
2

)∆ψ

(j−1
2

)∆ψ

ρ

(

nT +
ψ − k∆ψ

Ω̂

∣

∣

∣

∣

k∆ψ

)

dψ , j, k = 0, . . . , L− 1 .

(4.28)

The approximation made above is to estimate the integral over the conditional
argument φ ∈ [ (k− 1

2
)∆ψ, (k+ 1

2
)∆ψ) by the value at the bin center φ = k∆ψ.

This is dictated by numerical efficiency, since the conditional ISI densities are
computationally expensive, and a high resolution of the phase axis desired.
Thus one will not want to compute more than L ISI densities just to “waste”
them as midpoints in the integration. Errors are negligible for smooth kernels.

6T (ψ |φ) is not a density in φ, requiring the normalization by ∆ψ.
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A brief comment on notation: vectors are represented by bold lowercase
letters, while matrices are written as bold uppercase letters. The elements
of a matrix A are given as Ajk, and likewise for vectors. If functions were
indexed in the continuous case, such as the spike phase densities χk, this index
is written as superscript in parentheses, χ(k). All vectors are column vectors.

The iteration equation (4.21) simplifies to a matrix-vector multiplication

χ(k+1) = T · χ(k) , (4.29)

and the stationary distribution χ(s) is the eigenvector to eigenvalue 1 of the
matrix T. The Markov process on the unit circle is thus reduced to a Markov
chain with L states. All results for Markov operators have counterparts in the
theory of Markov chains (Feller 1970, Ch. XV–XVI). In particular, since the
kernel of the Markov operator is strictly positive, one has Tjk > 0. Finite
Markov chains with this property are irreducible and aperiodic, and have a
unique eigenvector to eigenvalue λ = 1; see von Mises (1964, Ch. 12.3). All
other eigenvectors have eigenvalues |λ| < 1. This means that the convergence
property of the Markov operator carries over to the Markov chain so that

χ(k) −→ χ(s) = T · χ(s) for k →∞ (4.30)

for any initial phase distribution χ(0).

In practice, the transition matrix T is obtained numerically via Eq. (4.18)
from the conditional ISI densities ρ(τ |φ) of Chapters 2 and 3. The station-
ary distribution is then found using standard eigenvector routines (The Math-
Works, Inc. 1998). The stationary ISI distribution finally is given by Eq. (4.26).
This process is not without numerical perils: While the column-wise normal-
ization of T can be enforced,7 many matrix elements may be zero to numerical
precision. Indeed, numerical stability is often improved by setting matrix el-
ements on the order of the machine accuracy to zero. This might yield a
“numerical matrix” that is no longer irreducible and aperiodic. But since the
stationary density χ(s) of the Markov operator T is guaranteed to exist and to
be unique, it is safe to take the eigenvector to eigenvalue 1 of T as stationary
distribution χ(s). This holds as long as a only single eigenvalue fulfills |λ| = 1
and the eigenvector computation is numerically stable. A rigorous test against
simulations is given in Section 4.6.2, see Fig. 4.11, p. 75.

An example for the phase evolution of an initially uniform phase distribu-
tion towards the stationary state under the influence of a transition matrix
T is given in Fig. 4.5. The phase axis was divided into L = 72 intervals of
∆ψ = π/36 = 5◦. To “read” the transition matrix, note that the matrix
columns correspond to the phase φ of the spike preceding the interval, the

7The error is negligible if the norm of the numerical ISI densities is nearly unity, e.g.
∫

ρ(τ |φ) dτ > 0.999.
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Figure 4.5: (a) Graphic representation of the Markov chain iteration given by Eq. (4.29).
The dashed line is the matrix diagonal. Probability is given by color as indicated. (b) Evo-
lution of an initially uniform phase distribution under subsequent multiplications with T,
from right to left. The approach to the stationary state is evident. See text for details.
Parameters are the same as in Fig. 4.1(d): µ = 0.9, q = 0.1, Ω = 0.1π, σ = 0.1.

rows to the phase ψ of the spike terminating it. The phase axes8 run from −π
to π from bottom to top in phase distribution vectors χ and the rows of the
transition matrix T, and from right to left across the columns of T. Thus, the
horizontal bar in the transition matrix shown in Fig. 4.5 indicates that for most
values of φ, the next spike will occur around ψ ≈ −π/4. The bar corresponds
to the periodic peaks of the conditional ISI densities. For −π/4 . φ . π/2,
the matrix is dominated by a “finger”, running parallel to the matrix diagonal.
This finger results from the refractory peak of the conditional ISI distributions,
which is present only in this range of φ values, compare Fig. 4.4. Within this
range of phases, a spike will be followed by another spike at a slightly later
phase, as shown in Fig. 4.5(b). Figuratively speaking, the neuron fires a burst

8φ, ψ ∈ [−π, π) instead of [ 0, 2π) renders the matrix structures more clearly.



4.4 Unconstrained stimulation 61

of spikes upon every period of the stimulus, compare Fig. 4.1(d). One should
keep in mind, though, that there is always a chance that two subsequent spikes
will be one or more stimulus periods apart, even though they are close in phase:
in the Markov chain in phase, all information about actual interval lengths is
lost.

4.4.3 Markov chain in time

Since the spike train is a Markov process, it may be treated as a Markov chain
in discrete time. In contrast to the Markov chain in phase, this chain will
not be limited to a finite interval, but extend along the positive real axis.
Furthermore, since no two spikes can occur at the same time, all states of
this Markov chain will be transient, and no stationary density of spike times
exists: the time of the n + 1st spike will have a different, “later” distribution
than that of the nth. This entails a number of difficulties: the transition matrix
of the Markov chain in time is infinite, and, lacking stationarity, Eq. (4.12) for
the spike intensity remains cumbersome to evaluate. The additional effort is
well invested, since the spike intensity provides much insight into the stimulus
response of the neuron.

Assume that conditional interspike-interval densities have been computed
for a phase discretization ∆ψ = 2π/L as in the previous section. This ∆ψ
corresponds to a time discretization of ∆t = T/L, where T = 2π/Ω̂ is the
stimulus period. In analogy to the phase transition matrix T one may now
define a time transition matrix

Qjm ≡ ρ
(

(j −m)∆t
∣

∣ (m mod L)∆ψ
)

∆t

≈ Prob{Spike at m∆t followed by spike at j∆t.} , j,m ≥ 0 .
(4.31)

The columns of Q are discrete probability distributions with normalization
∑∞

j=0 Qjm = 1, whence Q is a stochastic matrix. Furthermore, it is a lower
triangular matrix with vanishing diagonal, i.e. Qjm = 0 for j ≤ m. The ele-
ments above the diagonal vanish since the spikes are ordered, and the vanishing
diagonal entries reflect the fact that no two spikes can occur at the same time.

The discrete counterpart to the spike time density qk(t) is the infinite vector
q(k) with elements

q
(k)
j ≈ qk(j∆t | t0)∆t = Prob

{

kth spike occurs in [ j∆t, (j + 1)∆t).
}

. (4.32)

It is a discrete probability distribution like the colums of Q. Since the reference
spike occured at t0 = 0 with certainty one has

q(0) = (1, 0, 0, . . . )tr .

Starting from this initial distribution, all following are obtained by iterated
multiplication with the transition matrix

q(k) = Qq(k−1) = Qkq(0) (4.33)
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Figure 4.6: Firing activity in response to unconstrained sinusoidal stimulation clearly re-
flects the stimulus period T = 40. (a) Spike intensity q(t) (black) and spike time densities
qk(t) for first (red), second (blue) to ninth spike (sand). The stimulus is the same as the
nominal stimulus in Fig. 4.3(b) . (b) Spike intensity (black), and stationary ISI density ρ(s)

(red) for the same stimulus.

which is the discrete version of Eq. (4.12). The spike intensity is thus from
Eq. (4.6)

q =
1

∆t

∞
∑

k=1

q(k) =

(

∞
∑

k=1

Qk

)

q(0)

∆t
. (4.34)

Division by ∆t ensures that qj is the probability per unit time to observe a
spike around j∆t.

Numerical evaluation of these equations is facilitated by the lower triangu-
lar structure of the transition matrix Q. This entails that all elements of the
powers of Q with indices j,m ≤ N will only depend on elements of Qjm with
j,m ≤ N . Therefore, spike trains of finite length tk ≤ Tmax = N∆t can be
treated without further approximations using N ×N matrices. Furthermore,
the finite transition matrices are nilpotent so that QN = 0. The infinite sum
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in Eq. (4.34) thus becomes finite and yields

q =

(

N−1
∑

k=1

Qk

)

q(0)

∆t
=
[

(Q− 1)−1 − 1
] q(0)

∆t
.

The matrix inversion is easily performed by forward substitution leading to a
recursion for the spike intensity (Press et al. 1992)

x0 = 1/∆t , xm =
m−1
∑

j=0

Qmjxj , m ≥ 1

q0 = 0 qm = xm .

(4.35)

q0 = 0 since the reference spike at t0 = 0 is excluded from the spike train by
definition.

As an example, Fig. 4.6(a) shows the spike intensity q(t) and the spike time
density qk(t) for the same stimulus as used in Fig. 4.3(b) but now for uncon-
strained stimulation. The difference is striking: the spike intensity strongly
reflects the periodicity of the unconstrained stimulus, while the analogous re-
newal density of the constrained regime smoothes out quickly. In the uncon-
strained case, the intensity q(t) is nearly stationary across periods, even though
the individual qk(t) smear out for larger k. The neuron fires bursts of two to
four spikes per stimulus period, interrupted by silence: the firing pattern is
stochastically locked to the stimulus. Fig. 4.6(b) compares the the stationary
ISI density ρ(s)(t) to the spike intensity and clearly demonstrates that much
information about the spike train is lost if only ρ(s)(t) were measured. While
the initial peak of the stationary ISI density indicates spikes in rapid succes-
sion, and the soft bump at t ≈ 35 points to periods of silence between such
bursts, the precise structure of the firing pattern could not be recovered.

4.5 Spike train statistics

Over the past decades, a set of statistics has evolved which is commonly mea-
sured in neurophysiological experiments. The most detailed characterization
of the spike sequences elicited from a neuron would be given by the spike train
density Υn(t). The latter is an n-dimensional probability density which is dif-
ficult to estimate (Scott 1992). Two approaches—mostly used in information
theoretic analysis of neuronal activity—are to collect gargantuan amounts of
data from insects (Strong et al. 1998) or to apply intricate correction schemes
to scarce primate data (Golomb et al. 1997). Even if the spike train density
could be measured efficiently, it would most likely provide little insight by
itself, since it is difficult to visualize.

Interspike-interval histograms (ISIH) are much more easily obtained and
have been in use for a long time (Kiang 1965). They are equivalent to the
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constrained unconstrained

PST histogram n/a (spike intensity, see text)

ISI histogram ρ(τ) ρ(s)(τ)

cycle histogram
∑

k ρ
(

[2πk + ψ]/Ω) χ(s)(ψ)

mean ISI 〈τ〉
∫∞

0
τρ(τ) dτ

∫∞
0
τρ(s)(τ) dτ

firing rate ν 1/ 〈τ〉 1/ 〈τ〉

coeff. of var. Cv

√

〈∆τ 2〉/ 〈τ〉
√

〈∆τ 2〉/ 〈τ〉

Fano factor F C2
v see Eq. (4.36)

vector strength r
∣

∣

∫∞
0
ρ(τ) eiΩτ dτ

∣

∣

∣

∣

∫ 2π

0
χ(s)(ψ) eiψ dψ

∣

∣

Table 4.1: Spike train statistics under constrained and unconstrained stimulation.

ISI density ρ(τ) in the case of constrained stimulation. For unconstrained
stimulation, it is to be compared to the stationary ISI density ρ(s)(τ) from
Eq. (4.26). An example is given in Fig. 5.10, p. 94. For sinusoidal stimuli,
Rose et al. (1967) introduced the cycle histogram, which is equivalent to the
stationary phase distribution as discussed in Section 4.4.1.

The post-stimulus time histogram (PSTH) commonly recorded in neuro-
physiological experiments is related to the spike intensity q(t). The essential
difference between PSTH and spike intensity lies in the time origin. When
measuring PSTHs, the time origin is chosen arbitrarily, and the stimulus sets
in a fixed time later. For the spike intensity, the origin is fixed to a spike at
or after the stimulus onset. Because of the dependence of the spike intensity
on the stimulus phase ψ0 at the time of the reference spike, only spikes in a
narrow window around ψ0 may be used as reference. This severely curtails
the available data, most likely to a degree that makes it impossible to measure
spike densities in in vivo experiments. A possible experimental paradigm in
vitro would be to record from the neuron in the absence of a stimulus until
a spike is fired, and to begin the injection of a stimulating current with a
predefined phase immediately afterwards.

Essential scalar statistics are the mean interspike-interval length 〈τ〉, its
variance 〈∆τ 2〉 and the coefficient of variation Cv =

√

〈∆τ 2〉/ 〈τ〉. A Poisson
process has Cv = 1, and smaller values indicate more regular spike trains. The
averages above are taken over ρ(τ) for constrained and ρ(s)(τ) for unconstrained
stimulation. The firing rate is usually approximated as ν = 1/ 〈τ〉.
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Another quantity that is sometimes studied is the Fano factor9 F , which
is defined as the ratio of variance to mean of the number of spikes fired in a
time window of length To. For a renewal process, i.e. constrained stimulation,
one has F = C2

v (Zador 1998). For unconstrained stimulation the Fano factor
is given by

F =
〈

N2
To − 〈NTo〉

2〉/ 〈NTo〉 with
〈

Nk
To

〉

=
∞
∑

N=0

Nk pN(To) (4.36)

where

pN(To) = Prob{N spikes occur in (0, To ].}

=

{

1−
∫ To

0
q1(t) dt for N = 0 ,

∫ To
0
qN(t)− qN+1(t) dt for N > 0

(4.37)

is the spike count distribution. A large Fano factor indicates that it is difficult
to predict the number of spikes that will occur in a given time To.

For responses to sinusoidal stimulation, Goldberg and Brown (1969) have
introduced the vector strength10 defined as

r =
∣

∣

〈

eiψ
〉∣

∣ (4.38)

where ψ is the phase at which spikes occur. Figuratively, each spike is assigned
a unit vector with direction corresponding to the spike phase, and the vector
strength is the length of the sum of all these vectors, divided by the number of
spikes. Thus, perfect phase-locking corresponds to r = 1, while r = 0 does not
necessarily indicate a random firing pattern. If, e.g., two spikes were fired per
stimulus period at phases ψ = 0 and π, the vector strength is zero although
the firing pattern is highly regular. For constrained stimulation, the above
expectation is obtained from the ISI density ρ(τ), and from the stationary
phase density χ(s) otherwise. All statistics are listed in Table 4.1 along with
the formulae for both stimulation regimes.

4.6 Power spectral density

The power spectral density (PSD) is widely used in the theory of signal pro-
cessing to evaluate the transmission properties of systems. It is particularly

9In the terminology of point processes, the Fano factor is a statistic of counts, as opposed
to a statistic of intervals, such as the mean ISI length.

10Plesser and Geisel (1999) referred to the vector strength r as coefficient of synchro-
nization CS, but the latter term has been defined in a different way by Rose et al. (1967).
Another term for r commonly used in the literature is synchronization index (Anderson
et al. 1971).
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well suited to judge the transmission of periodic stimuli in terms of the signal-
to-noise ratio. The latter is the most commonly used quantity employed in
investigations of stochastic resonance (Gammaitoni et al. 1998) and will play
a key role in Chapter 5. Applications in neurophysiology have apparently been
rare (Bair et al. 1994), except in conjunction with stochastic resonance. The
power spectral density for both constrained (Plesser and Tanaka 1997) and
unconstrained (Plesser and Geisel 1999) is derived here from the pertaining
ISI densities.

Power spectra are often computed in the limit of an infinitely long signal,
but this appears to be of little relevance to a neuroscience study: The main
concern in this case is how much information neuron A can transmit to neu-
ron B within a limited observation time To (Stemmler 1996). This observation
time may be set by the need to react quickly to stimuli, but also by the “for-
getfulness” of the recipient neuron. Therefore, the time-limited power spectral
density

STo(ω) =
1

πTo

〈

∣

∣

∣

∣

∫ To

0

ft(t) e−iωt dt

∣

∣

∣

∣

2
〉

(4.39)

of the spike train t is used in this work (Priestley 1996). For a train of δ-spikes
the PSD becomes

STo(ω) =
1

πTo

〈

∑

0<tj ,tm≤To

e−iω(tj−tm)

〉

. (4.40)

The sums above are awkward to evaluate if the time limit, but not the num-
ber of spikes is fixed. Therefore, spike-count-conditional PSDs are computed
separately for each number M of spikes in To

STo,M(ω) =
1

πTo

〈

M
∑

j,k=1

e−iω(tj−tm)

〉

=
1

πTo

[

M + 2Re
M−1
∑

j=1

M−j
∑

k=1

〈

e−iω(tj+k−tj)
〉

]

.

(4.41)

These are then averaged over the spike count distribution to obtain the full
power spectral density

STo(ω) =
∞
∑

M=0

STo,M(ω) pM(To) , (4.42)

The evaluation of the remaining average poses major difficulties, since it is
to be taken conditional on M spikes occurring in To: instead of averaging over
the joint spike time density qj+k,j(t, s) defined in Eq. (4.4), one has to use the
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Figure 4.7: Joint spike time densities for (a) the first and (b) the third spike in a train.
Colored histograms are count-conditional densities qk,0(t, 0 |To,M) for spike counts M = 5
(red), M = 8 (blue), and M = 12 (yellow). The black line is the plain jSTD qk,0(t, 0). The
expected spike count is 〈M〉To

= 7.8 for To = 100. All probabilities shown vanish for t > 60.

corresponding count-conditional density

qj+k,j(t, s |To,M) = Prob

{

In train t, the j + kth spike occurs at t and the
jth at s, provided M spikes occur in (0, To ].

}

.

(4.43)

Fig. 4.7 gives some examples of this density obtained from simulated spike
trains compared to the plain joint spike-time density; for simplicity, j = 0 and
s = 0 in the figure, so that qk,0(t, 0) = qk(t) could be exploited. The difference
between plain and count-conditional joint spike-time density is striking and it
is obviously impossible to approximate the latter by the former. The reason
for this is that the requirement of a particular spike count M imposes a global
constraint on the spike train and thus destroys the Markov property: if the
first interspike interval were very close to To, all following intervals had to be
very short. Thus, the count-conditional (joint) spike time densities cannot be
obtained via a Markov chain approach on principal grounds.
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The only solution to this conundrum are approximations, which differ for
the constrained and unconstrained case. For the former, exact results are
available in the limit of infinite observation time, while for the latter a reli-
able approximation to the power spectral density at the stimulus harmonics is
obtained in Section 4.6.2. An approximation to the full spectrum is given for
completeness in Section 4.6.3.

Before deriving expressions for the spectra, a crucial difference between the
spectra evoked by constrained and unconstrained stimulation deserves com-
ment. As indicated by the spike intensity [Fig. 4.3(b)], constrained stimula-
tion does not elicit a periodic firing pattern (in a stochastic sense). Therefore,
the spectrum will be continuous and bounded even for infinite observation
time (Priestley 1996). This justifies the study of spectra in the limit of infi-
nite observation time in this case. In response to unconstrained stimulation,
though, the neuron fires periodically, as again indicated by the spike intensity,
see Fig. 4.6. In consequence, the spectra possess a singular part, consisting of
sharp peaks at multiples of the stimulus frequency. For To →∞, these peaks
diverge, whence only the time-limited power spectral density is meaningful in
this regime.

4.6.1 PSD for constrained stimulation

The power spectral density of the spike train elicited by constrained stimulation
is quite easily obtained due to the renewal properties of the spike train. A
comprehensive treatment with a view to neuroscience applications is given
by Franklin and Bair (1995), albeit for constant stimuli; see also Plesser and
Tanaka (1997). As pointed out above, exact results are available only for
infinite To. Approximations for finite time were tested, but found to be reliable
only in the presence of very large noise, when the spectrum reduces to nothing
but background.

The spectrum is first derived for a fixed number of spikes, starting from
Eq. (4.41), before taking the limit to infinity. For constrained stimulation, the
joint spike time distribution simplifies to

qj+k,j(t, s) = qk(t− s)qj(s) (4.44)

with the results from Section 4.3. Therefore, the average over the exponential
in Eq. (4.41) becomes

〈

e−iω(tj+k−tj)
〉

=

∫ ∞

0

∫ ∞

0

e−iω(t−s) qk(t− s)qj(s) dt ds (4.45)

which upon the substitution u = t− s simplifies to

〈

e−iω(tj+k−tj)
〉

=

∫ ∞

0

qj(s) ds

∫ ∞

0

qk(u) e−iωu du = ρ̄k(iω) . (4.46)
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Figure 4.8: Power spectral density for constrained stimulation with sinusoidal stimuli. Re-
newal theory results are in blue, and spectra from simulated trains of 105 spikes for To = 1000
in red. Blue squares mark the limit S∞(ω → 0) from Eq. (4.49). The abscissa is in units
of the nominal stimulus frequency Ω and spectral power is in dB. Stimulus frequencies
were Ω = 0.1 with noise levels σ = 0.01, 0.05, 0.2 (left, top to bottom), and Ω = 0.5 with
σ = 0.05, 0.15, 0.3 (right, top to bottom); other parameters: µ = 0.9, q = 0.1, and vR = 0.
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Equation (4.10) has been used in the last step. ρ̄(iω) is the Laplace transform
of the ISI density. It is equal to the Fourier transform ρ̃(ω) ≡ ρ̄(iω) since
ρ(t) vanishes for negative values of the argument. Integrating over the entire
positive real axis above is justified, since the result will be considered only in
the limit To →∞. Inserting into Eq. (4.41) yields

STo,M(ω) =
M

πTo

[

1 + 2Re
ρ̃(ω)

1− ρ̃(ω)
+

2

M
Re

ρ̃(ω)(ρ̃(ω)M − 1)

(ρ̃(ω)− 1)2

]

. (4.47)

Now one has for the expected spike count of a renewal process at large times
that 〈M〉To → To/ 〈τ〉 (Feller 1971) so that

S∞(ω) = lim
To→∞

STo,M(ω) =
1

π 〈τ〉

[

1 + 2Re
ρ̃(ω)

1− ρ̃(ω)

]

. (4.48)

The spectrum as defined by Eq. (4.39) diverges at the origin, but Eq. (4.11b)
yields

lim
ω→0+

S∞(ω) =
C2

v

π 〈τ〉
. (4.49)

Fig. 4.8 compares the result of Eq. (4.48) to power spectra obtained from
simulated spike trains (Appendix B). The agreement is excellent, and the
result invites a few comments:

• The first term in brackets in Eq. (4.48) is the spectrum of a Poisson pro-
cess with mean interspike interval 〈τ〉. The spectrum of the modulated
process converges to this Poisson spectrum for large frequencies.

• The spectral peaks are strongly smeared even for moderate noise, and
for strong noise virtually no trace of the stimulus remains visible in the
PSD.

• Since the spike train is not a periodic process under constrained stimu-
lation, the peaks of the spectrum are shifted away from the harmonics of
the stimulus frequency, complicating the evaluation of the signal-to-noise
ratio, see Section 4.7.

• The dip in the spectra at low frequencies is caused by the refractori-
ness of the neuron (Franklin and Bair 1995) and has been observed in
experimental data (Bair et al. 1994).

• The divergence of Eq. (4.39) at ω = 0 leads to artefacts in the spectra
obtained from simulated trains. The spectra obtained by renewal process
analysis nicely converge to the limiting value of Eq. (4.49).
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Figure 4.9: Joint spike phase densities for (a) the first and (b) the third spike in a train.
Colored histograms are count-conditional densities χk,0(ψ, 0 |To,M) for spike counts M = 5
(red), M = 8 (blue), and M = 12 (yellow). The black line is the plain jSPD χk,0(ψ, 0). All
parameters are identical to Fig. 4.7.

4.6.2 PSD at harmonics of unconstrained stimuli

For a sinusoidal stimulus of frequency Ω, the spike-count-conditional spectrum
at the harmonics reduces to

STo,M(nΩ) =
M

πTo
[1 + 2RehM(nΩ)] (4.50)

with

hM(nΩ) =
1

M

M−1
∑

j=1

M−j
∑

k=1

〈

e−in(ψj+k−ψj)
〉

(4.51)

and the spike phases ψj as defined by Eq. (4.16). This average may be eval-
uated within the framework of the Markov chain in phase, offering essential
advantages. First of all, the Markov chain in phase is asymptotically stable
and the stationary density χ(s) easily obtained as shown above. The spectrum
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can thus be computed in the stationary state. Second, as demonstrated by a
comparison of Figs. 4.9 and 4.7, the count-conditional joint phase density

χj+k,j(ψ, φ |To,M) = Prob

{

The j + kth spike occurs at ψ and the jth

at φ, provided M spikes occur in (0, To ].

}

(4.52)

is approximated better by its “plain” counterpart χj+k,j(ψ, φ) than the corre-
sponding spike time densities. The reason for this is that the global constraint
on the spike count primarily alters the distribution of spikes between stimu-
lus periods, but affects their distribution within periods but little. Plotting is
facilited by χk,0(ψ, 0 |To,M) = χk(ψ).

Exploiting that χj+k,j(ψ, φ) = χk(ψ |φ)χ(s)(φ) in the stationary state, one
may thus write to a good degree of approximation

〈

e−in(ψj+k−ψj)
〉

=

∫ 2π

0

∫ 2π

0

e−in(ψ−φ) χk(ψ |φ)χ(s)(φ) dφ dψ . (4.53)

With an eye on numerical evaluation, the remainder of the derivation is given
for the discrete Markov chain; the generalization to the continuous-phase
Markov process should pose no principal difficulties. The discrete equivalent
to Eq. (4.53) is

〈

e−in(ψj+k−ψj)
〉

= â(n)tr ·Tk · b̂(n) (4.54)

with vectors (∆ψ = 2π/L is the phase discretization)

â(n) =
(

1, e−in∆ψ, e−2in∆ψ, . . . , e−(L−1)in∆ψ
)tr

b̂(n) =
(

χ
(s)
0 , χ

(s)
1 ein∆ψ, . . . , χ

(s)
L−1 e(L−1)in∆ψ

)tr
.

Upon inserting Eq. (4.54) into Eq. (4.51), observe that
〈

ein(ψj+k−ψj)
〉

de-
pends only on the “distance” k of the spikes, but not on their “position” j due
to stationarity. Hence the outer summation over j may be performed to obtain

hM(nΩ) = â(n)tr

[

1

M

M−1
∑

j=1

(M − j)Tj

]

b̂(n) .

Diagonalizing T leads to

hM(nΩ) = a(n)tr · S(M) · b(n) (4.55)

where S(M) is a diagonal matrix with elements11

S(M)
mm =















M − 1

2
for m = 1 ,

λm
1− λm

+
1

M

λm(λMm − 1)

(λm − 1)2
for m > 1 .

(4.56)

11The corresponding Eq. (A5) of Plesser and Geisel (1999) contains a typographical error.



4.6 Power spectral density 73

The λm are the ordered eigenvalues of T (λ1 = 1 > |λ2| ≥ . . . ≥ |λL|), and the
vectors a(n) and b(n) are given by

a(n) = Ctrâ(n) , b(n) = C−1b̂(n) (4.57a)

with the matrix decomposition

T = C · L ·C−1 , L = diag(λ1 = 1, λ2 , . . . , λL) . (4.57b)

Note that the term for m = 1 has no counterpart in the constrained case,
while the terms for m > 1 are very similar to the second and third terms of
the power spectral density for the constrained case, cf. Eq. (4.47). Inserting
Eq. (4.55) into Eq. (4.50) yields

STo,M(nΩ) =
M

πTo

[

1 + 2Re atr(n)S(M)b(n)
]

. (4.58)

The matrix element S
(M)
11 is linear in the number M of spikes, and, since

To/M → 〈τ〉 asymptotically, this term gives rise to the singular spectral com-
ponent that grows linearly with the length of the spike train. It is convenient
to split the spectrum into its singular and bounded parts

STo,M(nΩ) =
M

πTo

[

1 + A(n,M) + (M − 1)B(n)
]

(4.59)

with the bounded background

A(n,M) = 2 Re
[

atr(n) diag(0,S
(M)
22 , . . . ,S

(M)
LL ) b(n)

]

(4.60)

and the singular periodic contribution

B(n) = Re a1(n)b1(n) =

∣

∣

∣

∣

∣

L−1
∑

j=0

χ
(s)
j eijn∆ψ

∣

∣

∣

∣

∣

2

. (4.61)

The last equality follows directly from Eq. (4.57), because the first column of
C is an eigenvector of T to eigenvalue λ1 = 1 and thus equal to the stationary
phase distribution χ(s) up to a factor c 6= 0. The first row of C−1 as the
corresponding right eigenvector has all elements equal to 1/c, yielding the
result above. Note that A(n,M) is bounded for M → ∞, since |λm| < 1 for
m > 1 from Section 4.4.2 so that

lim
M→∞

∣

∣S(M)
mm

∣

∣ =

∣

∣

∣

∣

λm
1− λm

∣

∣

∣

∣

<∞ , m > 1 .
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Figure 4.10: Power spectral density for unconstrained stimulation with the same sinusoidal
stimuli used in Fig. 4.8 and observation time To = 200. Results at harmonics from Markov
chain approach in blue, and spectra from simulated trains in red. Circles mark the estimated
spectrum STo , triangles mark bounded part [1 + A(n, To/ 〈τ〉)]/π 〈τ〉, and the filled square
the limit of the spectrum at the origin from Eq. (4.49). The abscissa is in units of the
stimulus frequency Ω and spectral power is in dB.
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Figure 4.11: Power spectral density at stimulus frequency S(Ω) from Markov chain
(Eq. 4.62) and simulated trains are in excellent agreement. (a) Scatter plot of results from
245 parameter sets with Markov chain result on the abscissa and simulation result on or-
dinate; error bars for simulation results are shorter than the symbol size. The correlation
coefficient is > 0.999. Observation time is To = 200. (b) Distribution of difference ∆S
between simulation and Markov chain results, and fitted Gaussian distribution with mean
〈∆S〉 = −0.01 dB and standard deviation

√

〈∆S2〉 = 0.11 dB. The thick black bar marks
two standard errors of the mean of the simulation results.

In analogy to the constrained case, the spike count is now estimated as12

M = To/ 〈τ〉 ≈ 〈M〉To to obtain the time-limited PSD at the stimulus har-
monics from Eq. (4.59)

STo(nΩ) ≈ 1

π 〈τ〉

[

1 + A

(

n,
To
〈τ〉

)

+

(

To
〈τ〉
− 1

)

B(n)

]

. (4.62)

Figure 4.10 indicates excellent agreement between the power spectral density
at the harmonics given by this approximation with spectra obtained from
simulated spike trains via discrete Fourier transform.

To quantify the quality of the approximation, S(Ω) was computed for a
large number of stimuli from Eq. (4.62) and from simulated trains of 50000
spikes.13 The results are shown in Fig. 4.11 and indicate near-perfect agree-
ment. The standard deviation of the difference ∆S between simulation and
Markov chain results is only 0.11 dB, which is on the order of the statistical
error of the simulation results, while the mean of ∆S is nearly zero (−0.01 dB).

12Plesser and Geisel (1999) used M = bTo/ 〈τ〉c to approximate the spike count averaging;
the precise value of the fraction improves the approximation slightly.

13Stimulus parameters were an evenly spaced subset of those used in Fig. 5.17, p. 104.
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Figure 4.12: PSD at the stimulus harmonics increases with observation time for un-
constrained stimulation, while the background is independent of To: (a) To = 250 and
(b) To = 1000. Filter ringing is reduced at larger observation times. The stimulus is the
same as in Fig. 4.10(c). The abscissa is in units of the stimulus frequency Ω and spectral
power in dB.

The resulting spectra invite some comments:

• The first term of the power spectral density is again the Poisson train
PSD.

• The stimulus is clearly discernible in the spectrum for unconstrained
stimulation even for those stimuli where it has become invisible in the
constrained case, compare Fig. 4.8.

• For long times To and consequently large spike numbers M , the spectrum
is dominated by the singular part ∼MB(n), compare Fig. 4.12. It arises
from the persistent eigenmode to eigenvalue λ1 = 1, and represents the
long-range correlations between spikes induced by the synchronization
of the spike train to the stimulus. One might call it the PSD of the
stationary phase density χ(s), see Eq. (4.61). The peaks at the harmonics
thus decay the faster, the wider the phase density. For perfect phase-
locking, i.e. χ(s)(ψ) = δ(ψ − ψ0), the peaks would not decay at all.

• Since the Markov chain in phase does not describe the distribution of
spikes across periods, it yields no information about the noise background
of the spectrum. In particular, the continuous part of the spectrum
∼ [1 + A(n,M)] (triangles in Fig. 4.10) does not reliably estimate the
noise level unless the neuron rarely skips a stimulus period without firing.
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• The dip of the spectrum at lowest frequencies is due to refractory effects
as for the constrained stimulation. Since refractoriness should depend
little on stimulation details, the limiting value S∞(ω → 0) given by
Eq. (4.49) applies to the spectra of unconstrained spike trains as well, as
shown in Fig. 4.10.

• The derivation above applies to non-sinusoidal periodic stimuli if Ω is
replaced by the pseudo-frequency Ω̂. The resulting spectral values at
multiples of Ω̂ will usually be of little interest.

• The full spectra displayed in Fig. 4.10 for comparison show noticeable
filter ringing particularly for low stimulus frequencies. This is a conse-
quence of the rectangular window [ 0, To ] imposed in the definition of
STo . It is thus an artefact of the definition, not a numerical one. Ringing
might be reduced by using windows with softer flanks (Press et al. 1992),
but spectra would no longer be in accordance with the definition of STo ,
cf. Eq. (4.39). Since the evaluation of the power spectral densities at the
harmonics in closed form would be severely complicated if, e.g., a Han-
ning window were incorporated in the definition, only the rectangular
window is used here. Errors at the spectral peaks are negligible provided
that the observation time To � 2π/Ω. This condition is met throughout.

4.6.3 Full PSD for unconstrained stimulation

The complete power spectral density for periodic stimuli may be approximated
using the Markov chain in time introduced in Section 4.4.3, although results
are not as compact as those obtained in the two preceeding cases. Empirically,
the best available estimate of the count-conditional joint spike time density is

qj+k,j(t, s |To,M) ≈ q̂k(t− s | s)q̂j(s | t0 = 0) (4.63)

with the re-normalized conditional spike time density

q̂k(t− s | s) = qk(t− s | s)
/∫ To

s

qk(t− s | s) dt . (4.64)

The average in Eq. (4.41) may thus be written as

〈

eiω(tj+k−tj)
〉

=

∫ To

0

∫ To

0

eiω(t−s) q̂k(t− s | s)q̂j(s | 0) dt ds . (4.65)

Assume now as in Section 4.4.3 that time is discretized as ∆t = T/L with
T = 2π/Ω̂ and that the time transition matrix Q is of size N × N with
To = N∆t. The renormalized conditional spike time density Q̂k(t | s) is then
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Figure 4.13: The full power spectral density may be approximated by means of the Markov
chain in time: PSD for unconstrained stimulation with the same sinusoidal stimuli as in
Fig. 4.10(a) in (a) and Fig. 4.10(c) in (b). The spectrum from simulated spike trains is in
red, the approximated spectrum of Eq. (4.66) in yellow and the blue circle give the phase
matrix result at the harmonics.

given by the matrices Q̂k, which are obtained from Qk by renormalizing each
column to a unit sum. One thus obtains

〈

eiω(tj+k−tj)
〉

=
N
∑

`=1

N
∑

n=`+1

ei(n−`)ω∆t Q̂k
n`Q̂

j
`1 ,

where the inner summation starts from ` + 1 since no two spikes can occur
at the same time. This double sum cannot be simplified as in the previous
section, since no stationary state exists for the spike time Markov chain. The
spike-count-conditional PSD is therefore from Eq. (4.41)

STo,M(ω) =
M

πTo
+

2

πTo
Re

N
∑

`=1

e−i`ω∆t

{

M−1
∑

j=1

[

L
∑

n=`+1

einω∆t

(

M−j
∑

k=1

Q̂k
n`

)]

Q̂j
`1

}

.

(4.66)

The sums have been re-ordered to reflect the optimal arrangement for evalua-
tion by computer; an implementation is given in Plesser (1999). As the sums
above have to be evaluated explicitly, it is not possible to use fractional values
for the spike count M as in the preceeding cases. Instead, one has to resort to
M = bTo/ 〈τ〉c as summation limit. The example given in Fig. 4.13 indicates
fair agreement with simulated spectra. For small spike counts in the observa-
tion time, the deviations at the stimulus harmonics become considerable; the
phase matrix results are much closer to the true spectrum in this case.
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The computation of the full spectrum requires prohibitively more computer
time and memory than the phase matrix approach, since all powers of the
matrix Q up to some M = bTo/ 〈τ〉c have to be computed and stored. Even
with the power of workstations available today, the use of the full spectrum is
limited. For some technical considerations such as the choice of discretization
parameters, see Plesser (1999).

4.7 Signal-to-noise ratio

The signal-to-noise ratio SNR is a statistic with little tradition in the neu-
rosciences, but deeply engrained in the theory of stochastic resonance. It
measures the signal power contained in the spike train at the frequency Ω of
the driving sinusoidal stimulus relative to the “background activity” in the
train. As explained above, the signal-to-noise ratio will be measured for a
finite observation time To, except for constrained stimulation, where To = ∞
is justified.

The signal power STo(Ω) at the stimulus frequency is easily obtained from
Eq. (4.62) under unconstrained stimulation. For constrained stimulation a
complication arises, since the firing pattern is non-periodic, whence the spectral
peaks are shifted away from Ω. Thus, the signal power is taken to be the
maximum of the spectrum in a window around the stimulus frequency

S ′∞(Ω) = max
0.9Ω<ω<1.1Ω

S∞(Ω) , (4.67)

and

Ωmax = arg max
0.9Ω<ω<1.1Ω

S∞(Ω) (4.68)

is the location of the spectral peak. If S(ω) has no relative maximum inside
the interval, S ′∞(Ω) is undefined.

The noise background is even more difficult to determine. If the spectral
peaks are strongly smeared, as in Fig. 4.8(c), it is hard to decide where the
signal ends and the noise begins. Furthermore, for the interesting case of un-
constrained stimulation, the power spectral density off the stimulus harmonics
can only be approximated, and even this at prohibitive computational cost.
But the spectra quickly approach the white power spectrum

SP = 1/π 〈τ〉 (4.69)

of a Poisson process for larger frequencies, as a glance at Figs. 4.8 and 4.10
reveals. Since the mean ISI 〈τ〉 is easily computed, cf. Table 4.1, it has been
used by several authors to estimate the noise background (Plesser and Geisel
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1999; Plesser and Tanaka 1997; Stemmler 1996; Shimokawa et al. 1999a). The
signal-noise-ratio is therefore defined as

SNR∞ = S ′∞(Ω)/SP for constrained stimuli, (4.70a)

SNRTo = STo(Ω)/SP for unconstrained stimuli. (4.70b)

The subscripts ∞ and To will usually be dropped for brevity.
Basing the SNR on the Poisson spectrum may be interpreted in a more

elementary way: The SNR measures how well the periodically modulated spike
train contrasts with a homogeneous Poisson train background of comparable
intensity.



Chapter 5

Noise Aided Signal Processing

With all required tools at hand, the stage is set for the task proper: the analysis
of signal processing properties of the neuronal spike generator. In particular,
this chapter aims to clarify the effect of Gaussian white noise on the trans-
formation of a continuous sinusoidal input current into a spike train. With
a view to the all-or-nothing nature of spike trains, this may be interpreted
as an analog-to-digital conversion. As it has been suggested that the brain
achieves its tremendous capabilities at minute power consumption through an
intricate combination of analog signal processing within neurons and digital
signaling between them, this A/D conversion is crucial to the nervous sys-
tem (Sarpeshkar 1998). It is shown here that the encoding of subthreshold
membrane potential fluctuations into spike trains benefits from noise through
stochastic resonance.

The encoding of constrained stimuli into spike trains will be treated in
Section 5.1. It will be shown that the Ornstein-Uhlenbeck neuron exhibits
stochastic resonance at small noise amplitudes in this regime due to frequency
matching: the signal-to-noise ratio is maximized when interspike intervals co-
incide with multiples of the effective stimulus period. Since this effective period
will be similar to the nominal stimulus period only for a small range of initial
stimulus phases, stochastic resonance occurs but under peculiar circumstances.
In particular, it is demonstrated that stochastic resonance disappears in this
artificial regime if the initial phase φ0 adapts to the noise applied.

The biologically relevant unconstrained stimulation is then studied in the
remainder of this chapter. The dependence of essential response properties
such as the interspike-interval and spike phase densities, and of the spike in-
tensity on stimulus parameters are discussed in detail. They are shown to be in
good agreement with data obtained from sensory afferent neurons in monkeys
and cats. The Markov chain method opens the way to analyze the complex
firing patterns observed in these neurons without resorting to analog or dig-
ital simulations. In particular, the cross-over from the transmission of pulse
packets to regular firing of individual spikes, as is found in cold receptors with
increasing temperature, is reproduced well by the model.
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base current µ = 0.9 frequency period noise amplitude σ

stim. amplitude q = 0.1 Ω = 0.1π T = 20 0.01 0.053 0.25

reset potential vR = 0 Ω = 0.33π T = 6 0.03 0.064 0.25

initial phase φ0 = 0 Ω = 0.5π T = 4 0.05 0.074 0.25

Table 5.1: Parameters of the standard stimulus set used for illustrative examples. Base
current, stimulus amplitude, reset potential and initial phase are the same for all nine exam-
ples, which differ in frequency and noise. Because of the low-pass behavior of the Ornstein-
Uhlenbeck neuron, stronger noise is required at higher frequencies to evoke responses.

The key result of this thesis is established in Section 5.3: signal processing
in the Ornstein-Uhlenbeck neuron is fostered by noise through stochastic double
resonance (SDR). Besides classic stochastic resonance, i.e. the maximization
of the signal-to-noise ratio of the output at a particular input noise ampli-
tude, the neuron also benefits from bona fide stochastic resonance. The latter
permits the neuron to achieve a particularly high output signal-to-noise ratio
at the resonance frequency. Noise thus furnishes the neuron with bandpass
properties. The origins of this effect are elucidated in detail. The resonance
in noise is traced to a compromise between signal quality (vector strength)
and signal intensity (firing rate), while the resonance in stimulus frequency is
shown to arise through a matching of timescales. The dependence of the re-
sponse properties of the neuron on base current, stimulus amplitude and reset
potential are studied quantitatively. Stochastic double resonance is shown to
prevail across a wide range of these parameters. The optimal signal-to-noise
ratio is found to depend on scaled model parameters in a straightforward fash-
ion. In particular, σopt

r ≈ 2/3 is identified as optimal input noise amplitude
independent of all other stimulus parameters. A detailed analysis based on the
Arrhenius&Current model reveals the mechanisms giving rise to the observed
parameter dependence.

5.1 Constrained stimulation

When a neuron is driven by a constrained periodic stimulus, this stimulus is
reset to some initial phase φ0 after each spike. The effective stimulus delivered
to the neuron will thus reflect the periodicity of the nominal stimulus—the
one that were delivered without reset—only if spikes occur preferentially at a
phase near φ0, cf. Fig. 4.2, p. 52. Therefore, the spike train generated by the
neuron will properly encode the nominal stimulus only if stimulus and reset
are properly matched.
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For sinusoidal stimuli of the form

I(t) = µ+ q cos(Ωt+ φ0)

as studied here, nearly periodic responses are obtained in the vicinity of φ0 = 0.
This is the initial phase chosen in all previous work on the constrained regime
(Plesser and Tanaka 1997; Shimokawa et al. 1999a; Bulsara et al. 1996). For
illustrative purposes, a standard set of stimuli comprising low, medium and
high frequencies, each combined with three different noise amplitudes will be
used throughout this chapter. The parameter values are given in Table 5.1.

Figure 5.1 shows the response of the Ornstein-Uhlenbeck neuron to this
standard stimulus set in terms of the interspike-interval density, spike intensity,
and power spectrum. The ISI density ρ(t) varies strongly with noise. For
small noise amplitudes σ (red lines in the figure), it consists of a series of
nearly Gaussian modes separated by the stimulus period T . These peaks are
located close to multiples of the period only because of the particular choice
of the initial phase φ0 = 0; an example for φ0 = π/2 is given in Fig. 5.2(b).
With the possible exception of the first modes at high stimulus frequencies, the
height of these Gaussian modes decays exponentially for large times. Since the
peaks are narrow and close to multiples of T , the neuron fires regularly around
multiples of the stimulus period, as shown by the spike intensity q(t). As
time proceeds, jitter accumulates over subsequent interspike intervals and the
peaks of the spike intensity widen gradually. The spike intensity approaches
its stationary value 1/ 〈τ〉 in the limit of long times even for low noise. The
power spectral density has sharp peaks close to the nominal stimulus frequency
Ω, and tends to a white Poisson spectrum for larger frequencies. The low-
pass nature of the neural integrator is reflected by the fact that the peaks of
all densities/intensities broaden with frequency. Since the supremum of the
noise-free membrane potential (cf. Fig. 5.18, p. 106)

v∞ = sup
t≥0

v0(t) = µ+
q√

1 + Ω2

decreases with increasing Ω, stronger noise is required to make the neuron fire
(at measurable rate) for high frequencies.

The strong noise limit (yellow in Fig. 5.1) is characterized by an ISI mode
at short times which is not related to the stimulus period T , but reflects the
refractory time of the neuron.1 For very large noise, this peak tends towards
a gamma density regardless of stimulus frequency. Since the neuron fires es-
sentially at random in this regime, the spike intensity q(t) flattens almost
instantly. For intermediate noise (blue lines), a cross-over occurs. At low fre-
quencies in particular, clearly separated refractory and periodic modes of the

1This is the time required for the membrane potential to recover from the reset potential
vR = 0 to within roughly one noise amplitude from the threshold Θ = 1.
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Figure 5.2: The response to constrained stimulation depends markedly on the initial phase
φ0: Interspike-interval densities (top), spike intensities (middle), and power spectral densities
(bottom) in response to constrained stimulation as shown in Fig. 4.2. The left column is
for φ0 = 0, the right one for φ0 = π/2. Dashed lines mark the first and second multiples
of the stimulus period T = 20 in (a) through (d), and the frequency window (0.9Ω, 1.1Ω)
used for signal power determination in (e) and (f), see Eq. (4.67). Resetting the stimulus
to the “wrong” phase φ0 = π/2 prevents a synchronized response, so that the spectrum has
no peak around the stimulus frequency Ω. The stimulus is the weak noise, low frequency
stimulus of Table 5.1.
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Figure 5.3: Stochastic resonance under constrained stimulation: the signal-to-noise ratio
SNR peaks at a non-vanishing input noise amplitude σmax. This noise amplitude and the
SNR attained depend strongly on the stimulus frequency: Ω = 0.1π (red), Ω = 0.33π (blue),
Ω = 0.5π (yellow). Other parameters: µ = 0.9, q = 0.1, φ0 = 0.

interspike-interval density may coexist [Fig. 5.1(a)], while they merge into a
very wide bump at higher frequencies.

Signal processing under constrained stimulation may benefit from stochas-
tic resonance as shown in Fig. 5.3. The signal-to-noise ratio (SNR, Eq. 4.70a)
is maximized at a particular noise level σmax, which increases with stimulus
frequency. The mechanism responsible for this effect is best discussed for the
low frequency case. When the SNR is plotted versus noise amplitude on a
logarithmic abscissa, the graph reveals additional structure, see Fig. 5.4(a).
Besides the maximum at σmax = 0.0078, a marked change in the slope of the
curve become visible at σX = 0.027. This points to a cross-over between two
different regimes in the SNR decay. Figure 5.4(b) demonstrates that stochastic
resonance is caused by frequency matching in case of constrained stimulation:
The signal-to-noise is maximal for that noise amplitude for which the loca-
tion Ωmax of the spectral peak (compare Chapter 4.7) coincides with the reset
frequency

Ωres = 2π
/

Tres . (5.1)

Here, Tres is the location of the maximum of the ISI density i.e. the single
most probable ISI length, as indicated in Fig. 5.5. The stimulus will thus most
frequently be reset in intervals of Tres, hence the name reset frequency. Coin-
cidence of this frequency with the location of the spectral maximum indicates
synchronization between the stimulus reset and the correlations that dominate
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Figure 5.4: The mechanism of stochastic resonance under constrained stimulation: (a) The
graph of SNR vs. noise amplitude for low frequency shows more structure when the abscissa
is logarithmic (red line in Fig. 5.3). Dashed vertical lines mark the optimal noise σmax and
the noise amplitude σX at which cross-over to non-sinusoidal effective stimulation occurs.
(b) The SNR is maximized when the location of the spectral peak Ωmax (red) and reset
frequency Ωres coincide. The dotted line marks the nominal stimulus frequency Ω = 0.1π.
(c) If the average number 〈M〉 of spikes per stimulus period (blue), exceeds unity for σ > σX ,
the the effective stimulus is non-sinusoidal, and both vector strength r (red) and SNR are
diminished.



88 Noise Aided Signal Processing

t

ρ(
t)

0 T/2 T
0

0.1

0.2

0.3

0.4

0.5

Figure 5.5: ISI densities for the low-frequency stimulus of Fig. 5.3 at different noise ampli-
tudes σ = 0.0042 (red), σmax = 0.0078 (blue), σX = 0.027 (yellow), and σ = 0.05 (green).
The dotted line marks the reset time Tres for σ = σmax. The Gaussian peaks of the ISI
density near the stimulus period T shift towards shorter times as noise increases. At σX ,
the refractory peak at t ≈ T/4 becomes discernible; see text.

the power spectral density. It is plausible that this match should give rise to
optimal signal processing performance.

The modes of the ISI density shift towards longer intervals below the opti-
mal noise amplitude σmax, and the reset frequency decreases, while it increases
beyond σmax as interspike intervals become shorter, see Fig. 5.5. The result-
ing desynchronization with the spectral peak frequency Ωmax causes the rather
symmetric decay of the SNR below and above the optimal noise amplitude.
Beyond the cross-over point σX , the SNR drops faster, because for σ > σX on
average more than one spike is fired per nominal stimulus period as demon-
strated in Fig. 5.4(c). This is apparent in the ISI density from the minute
refractory mode appearing at t ≈ T/4 (yellow line in Fig. 5.5). Since the
stimulus is reset after less than a period in this case, the effective stimulus but
little resembles the nominal one, and the periodicity of the latter is lost. This
is indicated by the marked decay of the vector strength r beyond σX as well.

Stochastic resonance thus exists for a properly chosen initial phase φ0 = 0.
For other values of φ0, with reset times Tres far from the nominal period T ,
the stimulus, and thus the firing pattern of the neuron, may differ markedly
from a sinusoid [Fig. 4.2(b)], and the spectrum might not have a peak at all in
the vicinity of the nominal stimulus frequency Ω, as exemplified in Fig. 5.2(f).
The output of the neuron does not reflect the nominal input in this case.

This raises the issue of how to choose the initial phase φ0 properly. The
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Figure 5.6: Stochastic resonance does not occur if the initial phase φ0 is adapted to the
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(blue). The red curve is the same as in Fig. 5.4(a) for comparison (φ0 = 0). (b) The reset
frequency Ωres (blue) is virtually identical with the nominal stimulus frequency Ω if the
initial phase is adjusted, while the peak location Ωmax approaches Ω from below for σ → 0
(red). (c) Optimal phase φopt(σ) vs. noise amplitude; φ = 0 is shown dashed for comparison.
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only distinguished phase is that for which spiking will most probably occur at
φ0 again, so that the effective stimulus is identical to the nominal on average.
This optimal initial phase is given by the location of the mode of the stationary
spike phase density

φopt = arg max
ψ∈[ 0,2π)

χ(s)(ψ)

obtained for unconstrained stimulation. This phase ought to be used as initial
phase when the response to unconstrained stimulation is approximated as a
renewal process. The optimal initial phase depends on the input noise am-
plitude σ as shown in Fig. 5.6(c): For weak noise, the initial stimulus phase
is advanced to shorten interspike intervals, while for strong noise the phase is
delayed to protract firing. As a consequence, the reset frequency Ωres becomes
identical to the nominal stimulus frequency Ω for all noise amplitudes, see
Fig. 5.6(b). The signal-to-noise ratio, finally, increases linearly (on the decibel
scale) as the input noise vanishes. Thus stochastic resonance does not occur
if the proper initial phase φopt(σ) is chosen at each noise level.

The conclusion to be drawn from this section is that stochastic resonance
occurs in the case of constrained stimulation only if the stimulus phase φ0 is
fixed within a narrow range. Outside of this range, the signal is massively
distorted, while proper adaptation of the initial phase to the noise present in
the input destroys the stochastic resonance effect.

5.2 Unconstrained stimulation:

stationary response

This section will characterize stationary responses of the Ornstein-Uhlenbeck
neuron to unconstrained sinusoidal stimuli to prepare the discussion of stochas-
tic resonance in the following section. The stimuli defined in Table 5.1 will
again serve as examples.

Most insight into the firing pattern of the neuron under unconstrained
stimulation is provided by the phase transition matrix T, since this matrix
contains all information about the synchronization of the spike train to the
stimulus phase. The matrices for the sample stimuli are displayed in Fig. 5.8.
The only important information lacking from the transition matrix is whether
subsequent spikes occur within the same stimulus period or not. When noise
is weak (left column of Fig. 5.8), the transition matrices are characterized by a
horizontal bar of high transition probability, which intersects the matrix diag-
onal. Thus, a stochastic fixed point exists. Spikes will preferentially occur at
this fixed point with not more than one spike per stimulus period. The result-
ing stationary spike phase density χ(s) is sharply peaked (red lines in center
colum of Fig. 5.9). The pertaining ISI densities confirm this analysis: spikes are
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(a)

(b)

(c)

Figure 5.7: Characteristic firing patterns in response to unconstrained stimulation:
(a) Phase locking with occasional skipping of a period, (b) bursts of two to three spikes
interrupted by silence, and (c) dithered firing. The stimulus is the low frequency stimulus
of Table 5.1 at weak, medium and strong noise.

separated by multiples of the stimulus period. They also indicate that several
periods may be skipped in between spikes. Note that the modes of the station-
ary ISI density are of necessity centered about multiples of the stimulus period
T : otherwise, no sharp spike phase density could result. The corresponding
spike intensities q(t) are shown on the right-hand side of Fig. 5.9. They clearly
demonstrate the precise locking of the spikes to a particular stimulus phase.
That the neuron may skip stimulus periods is indicated by the amplitude of
the spike intensity: the integral of q(t) over a single peak (say the one around
t = T ) gives the average number of spikes fired during the peak (≈ 0.73 in
this case). The spike intensity takes on a stationary, periodic pattern rapidly,
usually within a single stimulus period. All discussions of the spike intensity
will therefore refer to this stationary pattern. A sample spike train for low
noise is shown in Fig. 5.7(a). Phase-locked responses of this type may serve
as input to coincidence detectors measuring phase differences between stim-
uli arriving from both ears, and thus form the basis of stereophonic hearing
(Gerstner et al. 1996).

Bursting firing patterns occur at low frequencies combined with interme-
diate noise amplitudes. In this case, the transition matrix has a structure as
shown in Fig. 5.8(b). The horizontal high-probability bar no longer intersects
the matrix diagonal, but extends a “finger” parallel to it within a part of the
phase axis. As discussed in Chapter 4.4.2, this indicates that a few spikes may
be fired in rapid succession, interrupted by a pause when the firing phase re-
turns from the tip of the finger to the horizontal bar. For the given parameters,
the burst will typically consist of just two spikes, see Fig. 5.7(b). The corre-
sponding stationary spike phase density [blue in Fig. 5.9(b)] has two maxima
in consequence, while the pertaining ISI density is characterized by a narrow
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Figure 5.10: ISI histograms recorded from a monkey auditory nerve neuron a with best
frequency of 400 Hz (black) and stationary ISI densities ρ(s)(t) from the Ornstein-Uhlenbeck
neuron in response to pure sinusoids with frequencies (a) 80 Hz, (b) 100 Hz, (c) 120 Hz,
(d) 150 Hz, (e) 250 Hz, and (f) 400 Hz, which were scaled to dimensionless units with a
membrane time constant of τm = 237µs, cf. Eq. (2.19). Model parameters were µ = 0.86,
q = 0.08, σ = 0.051, and vR = 0 for all frequencies. Experimental data was digitized from
Fig. 4 of Rose et al. (1967).
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intra-burst peak at short times and a wider inter-burst peak close to the stim-
ulus period T . The spike intensity reflects the bursting firing pattern with two
preferred firing times per period. The integral over a single peak is ≈ 1.75
here, i.e. on average a two-spike burst is fired in three out of four periods, and
only a single spike in the other cases. Bursts may comprise a large number of
spikes if the stimulus frequency is sufficiently low, see Fig. 5.12(l). In this case,
the spike intensity does not necessarily show a maximum for each spike within
a burst but may be smeared into a peak without substructure. Bursting can-
not occur for intermediate to high frequencies with periods close to or shorter
than the refractory time of the neuron. In this case, the stochastic fix point
simply blurs with increasing noise and firing is gradually less phase-locked as
the strong noise regime is approached, cf. Fig. 5.8(e) and (h).

For strong noise, the transition matrix assumes a rather different structure
independent of the stimulus frequency, as shown in the right column of Fig. 5.8.
It is dominated by a band running parallel to and above the matrix diagonal,
with a companion in the lower left corner. If the matrix were wrapped to form a
torus, these two structures would join to form a band wound around the torus.
Figuratively speaking, spikes will “run” along this band. Firing is thus likely
at any phase, although the stationary phase density retains a weak maximum
(yellow in Fig. 5.9, center column). The ISI density shows little sign of of
the underlying periodic stimulus, whereas the spike intensity is a near-perfect
copy of the sinusoidal input to the neuron: the neuron’s response is linearized
by strong noise. Linearization by noise is known in electrical engineering as
dithering, and employed to alleviate discretization errors in digital-to-analog
converters (Gammaitoni 1995). Therefore, this regime will be referred to as
dithered firing. A sample spike train is shown in Fig. 5.7(c). In the cortex,
pools of neurons operating in this regime may provide the “carrier waves”
called for by some models of neural coding (Hopfield 1995).

A test of the Ornstein-Uhlenbeck neuron against neurophysiological data
is given in Fig. 5.10. The histograms drawn in black are interspike-interval
distributions recorded from the auditory nerve fiber of squirrel monkeys (Rose
et al. 1967). The stimuli were pure sinusoidal tones delivered to the ear of
the animal. The ISI distribution consists only of peaks at multiples of the
stimulus for high stimulus frequencies [Fig. 5.10(f)], while for lower frequencies
a refractory (intra-burst) peak appears at short times and becomes dominant
at the lowest frequencies. The Ornstein-Uhlenbeck neuron reproduces this
behavior faithfully with just a single set of parameters. They were optimized
globally over all six frequencies (The MathWorks, Inc. 1999). The Ornstein-
Uhlenbeck neuron thus appears to capture the essential properties of the spike
generator in neurons of the auditory nerve tuned to low frequencies. Two
details should be pointed out: First, the membrane time constant τm ≈ 237µs
may seem to short to be biologically plausible, but effective time constants in
this range have been found in auditory neurons of birds (Gerstner et al. 1996;
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Figure 5.11: Stationary discharge patterns of bursting cold receptors of the cat lingual
nerve at different constant temperatures. ISI histograms are shown on the left, and schematic
spike trains are to the right; the tick marks on the ISI histogram abscissae are 50 ms apart
[adapted from Fig. 5 of Braun et al. (1984); with permission of the authors and Wiley-VCH].

Geisler 1968). Second, the fit shown was obtained for vR = 0 indicating that
this is a reasonable value for the reset potential in sensory afferent neurons.
Cortical neurons, on the other hand, appear to experience much smaller resets
after spikes (Troyer and Miller 1997); the “cortical” parameter regime will
briefly be discussed in Section 5.3.3.

Further evidence in favor of the Ornstein-Uhlenbeck neuron is provided by
a comparison of Figures 5.11 and 5.12. The ISI histograms and spike trains
shown in the former were recorded from the lingual nerve of cats, a cold re-
ceptor afferent neuron. This nerve discharges spikes in bursts separated by
long gaps at low temperature (T ≈ 15 C). As temperature rises, the burst
become shorter but closer, until only single spikes are fired at regular inter-
vals. At even higher temperatures (T ≈ 35 C), an increasing number of spikes
are skipped. The Ornstein-Uhlenbeck neuron models this behavior well. The
membrane time constant is close to 5 ms in this case, which is plausible for
non-auditory neurons. The cross-over from bursts via regular to skipping firing
patterns has been traced to subthreshold membrane potential oscillations gen-
erated autonomously in the lingual nerve (Longtin and Hinzer 1996). These
endogenous oscillations give rise to a firing pattern that is obviously not a
renewal process, whence the term constrained stimulation was introduced in
Chapter 4 as a replacement for Lansky’s terminology.



5.3 Stochastic double resonance 97

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
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Figure 5.12: ISI densities (left) and firing patterns (right) of the Ornstein-Uhlenbeck neu-
ron reproduce the behavior of cat cold receptors shown in Fig. 5.11 well. ISI density graphs
and the scale bar have the same respective widths as those in Fig. 5.11. Stimulus pa-
rameters were determined by visual optimization: µ = 0.6, q = 0.4, vR = 0, Ω/π =
0.071, 0.065, 0.045, 0.027, 0.021, 0.015, and σ = 0.036, 0.042, 0.048, 0.048, 0.06, 0.06 from
top to bottom; time is in units of τm ≈ 4.8ms.

The excellent agreement between the Ornstein-Uhlenbeck neuron and ex-
perimental data from two species indicates that it is justified to ignore the
bounds on hyperpolarization, i.e. to set vhyp = −∞. This arises because the
base current µ is sufficiently strong in both cases to raise the membrane po-
tential to a level far above any rectifying reversal potentials.

To summarize, the Ornstein-Uhlenbeck neuron is backed by experimental
evidence, making it an object worthwhile of investigation.

5.3 Stochastic double resonance

The encoding of unconstrained periodic stimuli is now evaluated by measuring
the power spectral density and the resulting signal-to-noise ratio as defined in
Chapter 4.7. The spikes in a train show a high degree of correlation among
each other if they are strongly correlated to the stimulus. As a consequence,
the power spectral density has prominent peaks as displayed in Fig. 5.13(a)
for the weak noise sample stimulus at Ω = 0.33π. The small phase jitter
in the phase-locked firing pattern observed in this case preserves correlations
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Figure 5.13: The power spectral density in response to unconstrained periodic stimulation
exhibits stochastic resonance. Spectra in the left column are for stimulus frequency Ω =
0.33π and noise amplitudes σ = 0.03, 0.064, and 0.25 from top to bottom. The observation
time is To = 200. SNRTo is defined as the height of the spectral peak at Ω over the dashed
Poisson background SP . Circles mark results from the Markov chain method, full spectra
are from simulations. The right column demonstrates bona fide resonance with maximum
SNRTo for Ω = 0.33π in (d); frequency is 0.1π in (b), 0.33π in (d), and 0.5π in (f), while
σ = 0.064 for all frequencies. Remaining parameters are µ = 0.9, q = 0.1, vR = 0.
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Figure 5.14: In response to unconstrained sinusoidal stimulation, the signal-to-noise ratio
shows stochastic double resonance in input noise amplitude σ and stimulus frequency Ω.
(a) SNR vs. noise for stimulus frequencies Ω = 0.1π (red), 0.33π (blue) and 0.5π (yellow).
(b) SNR vs. stimulus frequency for noise amplitudes σ = 0.048 (green), 0.066 (brown), and
0.131 (cyan). (c) Signal-to-noise ratio as function of both stimulus frequency (abscissa) and
noise amplitude (ordinate); SNR is color coded as indicated. The black asterisk marks the
maximal SNRopt = 12dB, and colored arrows indicate the parameters used in (a) and (b).
Remaining stimulus parameters were µ = 0.9, q = 0.1, vR = 0.

well across many spikes, whence the spectral peaks decay only slowly towards
higher harmonics. These long-range correlations are gradually destroyed as
noise increases, until just a single peak at the stimulus frequency remains.
A glance down the left column of Fig. 5.13 indicates stochastic resonance:
the height of the spectral peak at the stimulus frequency above the Poisson
background (dashed line) is maximal in Fig. 5.13(c), i.e. for an intermediate
noise amplitude σmax. An inspection of the right column reveals another kind
of stochastic resonance: for fixed input noise amplitude σ, the signal-to-noise
ratio (a difference on the decibel scale) attains a maximum at a preferred
frequency Ωmax (Fig. 5.13(d)). Gammaitoni et al. (1995) has coined the term
bona fide stochastic resonance for this effect.
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This observation is manifested in Fig. 5.14. Classic stochastic resonance is
demonstrated in Fig. 5.14(a) for the three stimulus frequencies of the sample
set: the signal-to-noise ratio shows a clear maximum as a function of the in-
put noise amplitude σ. The optimal noise levels σmax are comparable to the
stimulus amplitude q = 0.1. Bona fide stochastic resonance is demonstrated in
Fig. 5.14(b) which displays maxima of the SNR as a function of the stimulus
frequency Ω for three noise amplitudes. Resonance with respect to both noise
amplitude and stimulus frequency is summarized in Fig. 5.14(c). The signal-
to-noise ratio pertaining to each noise-frequency combination is indicated in
color, ranging from blue to deep orange. The signal-to-noise ratio is markedly
increased in a small region of the σ-Ω plane and reaches its absolute maximum
of SNRopt = 12 dB for σopt = 0.066 and Ωopt = 1.08 = 0.342π (asterisk).
The maximum was found with the aid of a two-dimensional Nelder-Mead min-
imization algorithm (The MathWorks, Inc. 1999).

This is the central result of this thesis: The encoding of periodic signals
into spike trains by the Ornstein-Uhlenbeck neuron is fostered by noise through
stochastic double resonance.

5.3.1 Mechanism

The expression for the power spectral density at the stimulus harmonics as
derived by the Markov chain approach in Chapter 4.6.2 provides a transpar-
ent approximation to the signal-to-noise ratio. Inserting Eq. (4.48) into the
definition of the SNR (Eq. 4.70b) one obtains

SNRTo = 1 +A

(

1,
To
〈τ〉

)

+

(

To
〈τ〉
− 1

)

B(1) .

As long as all eigenvalues of the transition matrix T are small (except the
largest, which is λ1 = 1 by definition), the continuous contributionA(1, To/〈τ〉)
will be negligible, while the singular part (Eq. 4.61)

B(1) =

∣

∣

∣

∣

∣

L−1
∑

j=0

χ
(s)
j eij∆ψ

∣

∣

∣

∣

∣

2

= r2

is the square of the vector strength. The latter is close to unity for noise not
too strong, so that2

SNRTo ≈
To
〈τ〉

r2 = νr2To . (5.2)

2This model amounts to treating the spike train as an inhomogeneous Poisson process
(Shimokawa et al. 1999b). The phenomenological Ansatz Rphen proposed by Plesser and
Geisel (1999) is the square root of the approximation given here.
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Figure 5.15: Stochastic resonance results from a compromise between signal intensity [fir-
ing rate ν, (a) and (b)] and signal quality [vector strength r, (c) and (d)]: the signal-to-noise
ratio is approximately SNR ≈ νr2To [full lines in (e) and (f)]. Exact results from the Markov
chain are shown as dashed lines. Data are plotted vs. noise amplitude σ on the left for fre-
quencies Ω = 0.1π (red), 0.33π (blue), and 0.5π (yellow), and vs. stimulus frequency Ω on
the right for noise amplitudes σ = 0.048 (green), 0.103 (brown) and 0.195 (cyan). Colored
arrows on the left mark the noise amplitudes used on the right and vice versa.
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Figure 5.16: Matching of timescales gives rise to the bona fide resonance with respect to
the stimulus frequency. (a) Stationary ISI density ρ(s)(t) at the optimal noise amplitude
σmax for low (Ω = 0.1π, red), optimal (Ωopt = 0.342π, blue) and high frequency (Ω = 0.5π,
yellow). The pertaining spike intensities q(t) are given in (b). (c) The peaks of the spike
intensity at the first stimulus period shifted and rescaled for comparison of their widths at
half height. Amplitudes in (a) and (b) are misleading since abscissae are given in multiples of
the stimulus frequencies to facilitate comparison (T = 20, 5.8, 4, resp.). The integral of the
peaks near T in (b) is 1.74, 0.69, and 0.48 for the red, blue and yellow curves, respectively.

This approximation holds well as shown in Figs. 5.15(e) and (f). The signal-to-
noise ratio is thus expressed in terms of two quantities permitting an intuitive
access, namely the firing rate ν, quantifying signal intensity and the vector
strength r, measuring signal quality. The left column of Fig. 5.15 demon-
strates that the classic stochastic resonance with respect to noise amplitude
results from a compromise between these two signal properties: the optimal
combination of signal intensity and signal quality yields stochastic resonance.

The resonance in stimulus frequency, in contrast, is mainly caused by
a maximum of the vector strength as a function of stimulus frequency, see
Fig. 5.15(d). This holds particularly for stronger noise, when the firing rate is
virtually independent of the stimulus frequency [cyan line in Fig. 5.15(b)]. For
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the optimal stimulus-noise combination, both ν and r are maximized. This
synchronization resonance of the vector strength as a function of stimulus am-
plitude arises by matching the stimulus period to the internal timescale of the
neuron, which is set by its refractory time τref as shown in Fig. 5.16(a). For
low frequency (Ω = 0.1π, red), the neuron fires in bursts [cf. Fig. 5.8(a) for the
transition matrix], with a stationary interspike-interval density ρ(s)(t) charac-
terized by the intra-burst peak near t ≈ τref and the inter-burst peak close to
the stimulus period. This gives rise to rather wide peaks of the spike intensity
as shown in Fig. 5.16(c). If the stimulus is faster than optimal (yellow), phase
locking is lost and firing possible at all times. The modes of the ISI density
are slightly delayed compared to the stimulus period T , indicating that the
refractory time is longer than the period. The peaks of the spike intensity
are rather broad in this case as well. At the optimal frequency (blue), the
modes of the ISI density are perfectly aligned with the stimulus period and
well separated. This results in narrow peaks of the spike intensity separated
by intervals of silence: phase-locking is optimal if the timescales of stimulus
and neuron are matched.

The analysis above indicates that the signal-to-noise ratio as a measure of
coding quality “rewards” phase-locked responses with a large vector strength,
i.e. rythmic firing patterns. In contrast, quantities measuring the correlation
between stimulus and response will reward dithered firing with nearly sinu-
soidal spike intensity (Collins et al. 1996; Chialvo et al. 1997). From a neuro-
science perspective, the signal-to-noise ratio appears preferable for two reasons:
First, any processing based on coincidence detection, such as in stereophonic
hearing, requires phase-locked spike trains (Gerstner et al. 1996). Second, it
appears that spike packets can only propagate through neural networks if they
are both sufficiently strong and “tight” (Diesmann et al. 1999).

5.3.2 Role of stimulus amplitude and base current

All results up to this point were obtained for a single combination of base
current and stimulus amplitude. Figure 5.17 extends this to 24 combinations
of base currents (0.6 ≤ µ ≤ 0.95) and stimulus amplitudes (0.4 ≤ q/(1− µ) ≤
1.2). The reset potential was kept fixed at vR = 0, as appropriate for afferent
neurons, cf. Section 5.2. For each case, the signal-to-noise ratio is displayed in
color as a function of stimulus frequency Ω and input noise amplitude σ/(1−µ)
as in Fig. 5.14(c). Stochastic double resonance is found for all parameter com-
binations, although less pronounced for small base currents (top row). The op-
timal frequency-noise combination is again marked by an asterisk. Stochastic
double resonance is thus firmly established for the Ornstein-Uhlenbeck neuron
in the “afferent” regime.

The dependence of the optimal signal-to-noise ratio SNRopt, frequency Ωopt

and noise amplitude σopt on base current µ and stimulus amplitude q is best
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Figure 5.17: Signal-to-noise ratio for various combinations of base current current and
relative stimulus amplitude. Each figure shows the signal-to-noise ratio in color for one
µ-q-pair as a function of stimulus frequency Ω (abscissa) and relative noise amplitude σr =
σ/(1 − µ) (ordinate). The color scale for each column is given at the bottom. The black
asterisk marks the location of the SNR maximum. Stimuli in the white . . . . . . (continued)
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Figure 5.17(continued): . . . area to the bottom right of the figures evoked no measurable
responses. Each row of the figure represents one value of the base current µ = 0.6, 0.7,
0.9, 0.95 (top to bottom), and each column to one value of the relative stimulus amplitude
qr = q/(1−µ) = 0.4, 0.6, 0.8, 0.9, 1.0, 1.2 (left to right). The standard stimulus of Table 5.1
corresponds to subfigure (q), highlighted in red.
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Figure 5.18: The stimulus I(t) = µ + q cos Ωt shown in blue depolarizes the neuronal
membrane to the noise-free membrane potential v0(t) drawn in red. After refractory effects
have died out, the noise-free potential oscillates about the base potential vµ = µ with an
amplitude of q/

√
1 + Ω2. v∞ is the supremum of v0(t) as indicated by the dotted red line

and ζ is the phase lag of v0(t) vs. I(t). Relative amplitudes qr and σr are measured in
relation to 1 − µ, marked by the black arrow to the right. The ISI density (yellow) and
Arrhenius&Current hazard (green) are given for comparison on top for noise amplitude
σ = (1− µ)/2.

discussed in terms of relative amplitudes

σr =
σ

1− µ
, qr =

q

1− µ
, q̂r =

qr√
1 + Ω2

, (5.3)

as illustrated in Fig. 5.18. Figure 5.19 shows how the optimal frequency and
noise amplitude depend on the stimulus amplitude qr for different values of µ.
The most striking observation is that the optimal signal-to-noise ratio grows
linearly with the relative stimulus amplitude and is virtually independent of
the base current. Note that the “raw” SNRopt is plotted in Fig. 5.19(a), while
it is given in decibels in all other figures. Perhaps even more surprising is the
finding that the optimal relative noise amplitude

σopt
r ≈ 2

3

is nearly independent of both base current and stimulus amplitude. It appears
to be a universal parameter of the system. The optimal frequency, on the other
hand, depends roughly linearly on the stimulus amplitude with a slope that
decreases with increasing base current.

The Arrhenius&Current approximation to the Ornstein-Uhlenbeck neuron
as introduced in Chapter 3 provides an explanation for these observations.
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Figure 5.19: (a) The optimal signal-to-noise ratio SNRopt depends linearly on the relative
stimulus amplitude qr and is virtually independent of the base current µ for µ ∈ [ 0.6, 1),
i.e. for refractory coefficients γ > 1.5. Base currents are µ = 0.6 (red), 0.7 (blue), 0.9
(yellow) and 0.95 (green). (b) The optimal noise amplitude σopt ≈ 2/3 (dashed) is almost
independent of base current and stimulus amplitude. (c) The slope of the graph relating
optimal frequency to relative stimulus amplitude is the higher, the smaller the base current.
(d) The ratio of optimal firing rate to stimulus frequency is the average number of spikes
per stimulus period. Values larger than one indicate a bursty firing pattern. Crosses mark
data points, while lines are to guide the eye.

This approximation provides a good model for the signal-to-noise ratio as is
demonstrated in Fig. 5.20. The firing pattern of the A&C model is determined
by its hazard function, whence an analysis of the latter should elucidate all
dependencies of interest. With the noise-free potential v0(t) from Eq. (2.43),
Eq. (3.8) yields for the hazard

h(t) = (w1 + w2[Y (t)]+) e−x(t)2 (5.4a)

with

x(t) =
1

σr

[

1 + γ e−t−q̂rf(t)
]

, Y (t) =
1

σr

[

γ e−t−q̂rg(t)
]

(5.4b)



108 Noise Aided Signal Processing

OU neuron SNR [dB]

A
&

C
 n

eu
ro

n 
S

N
R

 [d
B

]

−5 0 5 10 15
−5

0

5

10

15

Figure 5.20: The signal-to-noise ratio of spike trains fired by the Ornstein-Uhlenbeck neu-
ron is approximated well by the Arrhenius&Current model as shown in this scatter plot.
Data are from some 6000 parameter combinations of Fig. 5.17. The solid line marks the
identity, while the dashed line is at −2 dB.

and

f(t) = cos(Ωt+ φ0 − ζ)− e−t cos(φ0 − ζ)

g(t) = f(t)− cos(Ωt+ φ0) , ζ = atan Ω .

Base current and reset potential determine the refractory coefficient

γ =
µ− vR
1− µ

, (5.4c)

which simplifies to γ = µ/(1 − µ) in the afferent regime. It will be positive
except for the unusual case of hyperpolarizing (negative) base current. The
periodic stimulus enters the hazard only through the functions f(t) and g(t)
with the common coefficient q̂r, while refractoriness is caused by the term γ e−t,
which captures the mean depolarization towards the base potential vµ = µ due
to the base current, cf. Fig. 5.18. The refractory term e−t cos(φ0−ζ) contained
in f(t) will be negligible as long as q̂r � γ.

Both noise and stimulus amplitude enter the hazard only as relative am-
plitudes, whence the response of the neuron should depend only on σr and
qr. This is demonstrated for the noise amplitude in Fig. 5.21: graphs of the
signal-to-noise ratio vs. noise amplitude for different µ are strikingly different
when the absolute amplitude σ is chosen as abscissa, Fig. 5.21(a), but coincide
perfectly for σr < 1 if plotted against the relative amplitude σr, Fig. 5.21(c).
For strong noise, the signal-to-noise ratio is much larger for small base current
than for large. Figs. 5.21(b) and (d) indicate that this deviation arises because
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Figure 5.21: The dependence of the signal-to-noise ratio on the absolute noise amplitude
σ varies strongly with the base current µ (a), while the dependence on the relative noise
amplitude is universal for σr not too large (c). Differences for σr � 1 are caused by the
firing rate (b), while the vector strength differs little (d). Base currents are µ = 0.6 (red),
0.9 (blue), and 0.95 (yellow) with refractory coefficients γ = 1.5, 9, and 19, respectively.
Relative stimulus amplitude is qr = 1 and frequency Ω = 0.35π.

the firing rate increases much faster with noise for small than for large base
current µ; the vector strength, in contrast, varies only little with µ. This effect
is mediated by the refractory coefficient γ, which rises from γ = 0 for µ = 0 to
a divergence at µ = 1. Thus, x(t) will be large and hence the hazard h(t) small
if base current and refractory coefficient are large, precluding high firing rates.
For small µ and γ, the converse is true. The paradox that small base currents
yield high firing rates is but an apparent one: it arises because stimulus and
noise amplitudes are taken relative to 1− µ. For fixed absolute amplitudes q
and σ, the firing rate rises with the base current. If noise is weak (σr < 1),
x(t) will remain large until the refractory term has decayed almost completely,
so that the value of the refractory coefficient has no influence on the firing
pattern. Thus the same signal-to-noise ratio is obtained independent of the
base current in this case.
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Figure 5.22: Transition matrices at optimal noise-frequency combinations differ depending
on base current and stimulus amplitude. Matrices in the top row are for base current µ = 0.6
(γ = 1.5), and for µ = 0.95 (γ = 19) in the bottom row, with relative stimulus amplitudes
qr = 0.4, 0.8, and 1.2 from left to right. The color scale ranges from 0 (dark blue) to 0.11
(dark red) for all matrices.

Since the behavior of the neuron is thus independent of the base current for
noise not too large, it is only natural that the optimal relative noise amplitude
σopt
r = 2/3 is largely independent of the base current. The base current has

no influence of the optimal signal-to-noise ratio either, because the hazard
will be extremely small until the refractory term has decayed completely if
σopt
r = 2/3. This renders SNRopt a function of the relative stimulus amplitude
qr alone. Why σopt

r is independent of qr, remains unclear at present.

The linear dependence of the signal-to-noise ratio on the stimulus amplitude
cannot yet be explained, but may be interpreted in the following way. Since
σopt
r is constant, the signal-to-noise ratio of the stimulus will be SNRin ∼
q2
r (Wiesenfeld et al. 1994). The observed linearity therefore suggests that

SNRopt ∼
√

SNRin, which is in qualitative agreement with recent results of
Burkitt and Clark (1999b) for the relation of input and output vector strength.
This would indicate a law of diminishing returns regarding the signal-to-noise
ratio of the input, i.e. an upper bound on the useful SNR range of spike trains.

The slope of the graph relating the optimal stimulus frequency Ωopt to the
relative stimulus amplitude qr is the larger, the smaller the base current µ, see
Fig. 5.19(c). A clue to this observation is provided by the ratio of the firing
rate to the stimulus frequency, i.e. the average number of spikes per stimulus
period, as shown in Fig. 5.19(d). The neuron fires less than one spike per
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stimulus period for large base currents independent of qr, indicating phase-
locked firing. The optimal frequency depends little on qr in this regime. For
small base currents, on the other hand, the neuron achieves the optimal signal-
to-noise ratio in different ways, depending on the stimulus amplitude: For small
qr, it prefers slow stimuli, and responds with bursting firing patterns. For large
qr, it prefers faster stimuli and fires phase-locked single spikes. This analysis
is confirmed by the pertaining transition matrices displayed in Fig. 5.22. For
small base current (µ = 0.6, top row), the transition from bursting to phase-
locked firing is evident. For large base current (µ = 0.95, bottom row), phase-
locked firing prevails at all stimulus amplitudes and is merely sharpened with
increasing qr.

The last paragraph indicates that the neuron may operate in two distinct
regimes. For large base currents, i.e. strong average depolarization, the neuron
will preferentially transmit stimuli of a fixed frequency, Ωopt ≈ 1. For small
base currents, in contrast, the preferred frequency is a function of the stimulus
amplitude, whence particular stimulus frequencies may be selected by varying
the stimulus amplitude.

5.3.3 Stochastic resonance in the cortical regime

All results presented hitherto presumed a reset potential vR = 0, far below the
threshold at Θ = 1. While this appears plausible when modeling afferent neu-
rons, Troyer and Miller (1997) have argued that a reset potential of vR = 0.7
is more reasonable for cortical cells. Figure 5.23 demonstrates stochastic dou-
ble resonance in this regime for base currents µ = 0.9 and 0.95 for some of
the stimulus amplitudes used in the afferent case, cf. Fig. 5.17. The optimal
signal-to-noise ratio, frequency and noise amplitude are given in Fig. 5.24 to-
gether with results for the afferent case. Results are nearly identical except for
the optimal frequency, which varies with stimulus amplitude much more in the
cortical than the afferent regime, particularly for µ = 0.9. This occurs because
the smaller reset induces a much shorter refractory time (refractory coefficient
γ = 2 instead of γ = 9 in the afferent regime). This permits the neuron to
attain a high signal-to-noise ratio by firing sharp bursts at intermediate to low
frequencies when driven by stimuli with small amplitudes. That bursting does
indeed occur for µ = 0.9 and qr = 0.4 is vindicated by the transition matrix
for this parameter combination, see Fig. 5.24(d).

The comparison of afferent and cortical regimes suggests that the optimal
signal processing properties will depend on base current and reset potential
only through the refractory coefficient. This is obviously true for the Arrhe-
nius&Current model, since µ and vR enter the hazard only through γ. To
test if the same holds for the Ornstein-Uhlenbeck neuron, optimal noise ampli-
tudes and frequencies were computed for six values of the refractory coefficient
(2 ≤ γ ≤ 20) and three values of the reset potential (vR = 0, 0.35, 0.7) with
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Figure 5.23: Signal-to-noise ratio for base currents µ = 0.9 (top) and µ = 0.95 (bottom)
in the cortical regime, vR = 0.7. Relative stimulus amplitudes are qr = 0.4, 0.8 and 1.2
from left to right. Within each figure, the stimulus frequency Ω is on the abscissa, and the
relative noise amplitude σr on the ordinate, while colors encode the SNR in decibel. The
black asterisk marks the location of the SNR maximum. White at the bottom right of the
figures corresponds stimuli evoking no measurable response.

corresponding base currents µ from Eq. (5.4c). Results are shown in Fig. 5.25
as optimal frequency vs. stimulus amplitude graph and indicate that response
properties depend only on γ, but not on µ and vR alone. The same holds
for the optimal noise amplitude and signal-to-noise ratio (not shown). The
relation between optimal frequency Ωopt and stimulus amplitude qr is almost
perfectly linear for all values of the refractory coefficient. The slope of these
linear fits increases with decreasing refractory coefficient, but unfortunately
cannot be related to it in a straightforward manner. If refractory effects are
strong (γ > 4), the frequency-noise relation is fairly flat, as the neuron fires
phase-locked spike trains independent of stimulus amplitude. For small values
of the refractory coefficient, on the other hand (γ < 3), the optimal frequency
depends markedly on the stimulus amplitude as bursting becomes attractive
for small amplitudes, as discussed for the afferent regime above. The deviation
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Figure 5.24: (a) The optimal signal-to-noise ratio SNRopt in the cortical regime (crosses,
reset potential vR = 0.7) is identical to that in the afferent regime (circles, vR = 0) across a
wide range of stimulus amplitudes qr for base currents µ = 0.9 (red) and 0.95 (blue). The
same holds for the optimal relative noise amplitude σopt

r in (b), while (c) the frequency-
amplitude graph is considerably steeper in the cortical than in the afferent regime. (d) The
upward-deflected finger in the transition matrix for vR = 0.7, µ = 0.9, qr = 0.4 indicates
that a bursting firing pattern is the reason for the low optimal frequency. Lines are to guide
the eye.

from linearity for γ = 4 most likely results from the cross-over between weak
and strong refractoriness.

This raises the question of what happens if refractory effects become mi-
nuscule. If, in particular, µ = vR, the refractory coefficient vanishes. Refrac-
toriness thus enters the hazard function only through the refractory term in
f(t), cf. Eq. (5.4), and will be comparatively small, since suprathreshold stim-
uli with qr � 1 are not considered here; see Tateno (1998) for a treatment of
that regime. If the Ornstein-Uhlenbeck neuron has no refractory time under
such conditions, nothing can be gained from matching the stimulus frequency
to it, and one should expect highest signal-to-noise ratios at extremely low
frequencies, at which the stimulus amplitude is dampened least through inte-
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Figure 5.25: The relation between optimal frequency Ωopt and stimulus amplitude qr de-
pends on base current µ and reset potential vR only through the refractory coefficient
γ = (µ − vR)/(1 − µ). Colors mark γ = 2 (red), γ = 2.5 (blue), γ = 4 (yellow), γ = 8
(green), γ = 12 (brown) and γ = 20 (cyan), while circles indicate vR = 0, crosses vR = 0.35
and triangles vR = 0.7. Base currents range from µ = 0.666 to µ = 0.986. Solid lines are
linear least-squares fits.

gration. Preliminary evidence suggests that this is indeed the case. But it is
likely that the Ornstein-Uhlenbeck neuron has to be modified slightly in this
“non-refractory” regime, for it is known from neurophysiological experiments
that neurons possess an absolute refractory time of a few milliseconds (Kandel
et al. 1991), during which no spikes can be generated at all. As long as the
relative refractory time required to depolarize the neuron to the base potential
vµ = µ after each spike/reset is long compared to the absolute refractory time,
there is little need to explicitly introduce the latter into the model. If relative
refractoriness, on the other hand, does no longer keep the neuron from firing
at too short intervals, absolute refractory mechanisms need to be modeled. A
definite answer will only be available after further studies, but a prediction
is possible: stochastic double resonance will arise through proper matching of
the stimulus timescale to the absolute refractory time.



Chapter 6

Summary

Stochastic double resonance has firmly been established as a property of the
Ornstein-Uhlenbeck neuron. This result is related to the existing literature
below, and its consequences for neuronal signal processing are discussed. Prior
to this, the methodological advances presented in this thesis and the results
for the case of constrained stimulation are reviewed briefly.

Methodological achievements

The most important technical contribution of this thesis is the Markov chain
analysis of the neuronal response to unconstrained periodic stimulation. It
provides explicit expressions for the stationary spike phase, interspike-interval,
and power spectral densities of spike trains. The Markov chain in time permits
for the computation of the spike intensity, thus facilitating the analysis of
responses to time-dependent stimuli. The precise relation of the spike intensity
to the population activity of neural networks studied by Gerstner (1999a)
remains to be clarified. Since the Markov chains both in time and in phase are
applicable to arbitrary Markov point processes, they should find applications
in many fields of research (Burkitt and Clark 1999b).

The analysis of responses to constrained stimulation was largely based on
standard techniques of renewal theory dating back to Lukes (1961). The spike
intensity was fruitfully exploited to demonstrate the temporal structure of
responses to constrained stimulation.

The algorithm for the computation of interspike-interval densities of the
Ornstein-Uhlenbeck neuron with time-dependent stimulation should prove use-
ful to research involving the first-passage time problem of forced Ornstein-
Uhlenbeck processes in general. It may indeed be applied to any kind of escape
process as long as the distribution of the state variable in the absence of the ab-
sorbing boundary is known—it simply replaces the Gaussians in Schrödinger’s
renewal equation. This generality, the transparency of the Ansatz, and the
greater numerical stability make it preferable to the method of Buonocore
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et al. (1987). As an aside, Schrödinger’s Ansatz was instrumental to prove
the strict positivity of the interspike-interval density, which in turn allowed
to establish the convergence of the Markov chain to a stable stationary phase
distribution. The Ansatz has further been exploited as a starting point for
a perturbation analysis of synchrony in neuronal firing (Burkitt and Clark
1999a). A comparison of perturbation and exact results is currently underway.

The Arrhenius&Current model provides for the first time a validated ap-
proximation to the dynamics of the Ornstein-Uhlenbeck neuron. The Arrhe-
nius and Abeles models were found to be slightly less accurate, but sufficient
to be of use in analytical studies demanding utmost mathematical simplic-
ity. Since these approximations pertain to the first-passage time problem of
the temporally modulated Ornstein-Uhlenbeck process, which has eluded an-
alytical solution throughout a half-century of research, they should meet with
widespread interest.

Answers have been provided here for all open issues listed by Gammaitoni
et al. (1998) as quoted in the introduction: first-passage-time distributions
are treated for periodic forcing without reset; reliable approximations to these
distributions were developed and tested; and the lower bound on the membrane
potential fluctuations was shown to be irrelevant to the response properties
of sensory afferent neurons in two mammalian species. Program code for the
algorithms developed here will be provided publicly as a service to the scientific
community (Plesser 1999).

Stochastic resonance under constrained stimulation

Classic stochastic resonance has been demonstrated for the Ornstein-Uhlen-
beck neuron driven by a constrained sinusoidal stimulus. The signal-to-noise
ratio is maximized if the period of the non-sinusoidal effective stimulus, which
results from the reset after each spike, matches the frequency dominating the
power spectrum of the spike train. This frequency matching arises, because the
modes of the interspike-interval distribution, which are located near multiples
of the stimulus period, shift towards shorter times with increasing noise. The
stochastic resonance effect was shown to disappear if the initial phase, to which
the stimulus is reset, was adapted to the noise amplitude in such a way that
the neuron would most likely fire at this initial phase during a later period,
effectively eliminating the stimulus reset. Therefore, stochastic resonance is an
artifact of the fixed reset phase and not likely to be relevant to biology—the
model rather reminds of a neuron stimulated by an old record with a crack.

The spectral analysis presented by Plesser and Tanaka (1997), including
the definition of the signal-to-noise ratio of constrained spike trains, were taken
up by Shimokawa et al. (1999a), who focused on stochastic resonance defined
in terms of the interspike-interval distribution along the lines of Bulsara et al.
(1996). The effects they observed occur in the presence of strong noise (ampli-



Stochastic Double Resonance 117

tudes σ > 0.1, compared to σ � 0.1 in the constrained regime here) and were
accompanied by signal-to-noise ratios close to zero decibel (Shimokawa et al.
1999a, Fig. 19(b)). This regime seems of little relevance to signal processing.

Stochastic Double Resonance

The preeminent finding of this thesis is that the Ornstein-Uhlenbeck neuron
benefits from noise twofold when encoding periodic stimuli into spike trains.
Not only is there a particular noise amplitude providing for a maximal signal-
to-noise ratio of the output, but there is a preferred range of frequencies as
well. I propose to call this effect stochastic double resonance.

The neuron will thus encode stimuli of some frequencies as spike trains that
are both intense and have a precise temporal structure. Neurons at the next
processing stage will easily discern these regular trains from a homogeneous
background of activity. Frequencies outside the preferred band, in contrast,
elicit irregular firing patterns, which will appear to its recipients to be little
more than—noise! To put it differently: The presence of noise permits the neu-
ron to operate as a synchronization bandpass filter in the subthreshold regime.
This bandpass can operate in two distinct fashions, which are easily switched.
The transmission mode is activated by a large base current, which renders
the preferred frequency of the neuron nearly independent of the stimulus am-
plitude. Signals within the optimal band will thus be transmitted regardless
of their amplitude. Small base currents provide for the discrimination mode,
as the preferred frequency depends linearly on the stimulus amplitude. This
opens a way to selectively gate signals based on their amplitude: Assume that a
periodic stimulus of a given frequency impinges on the dendrite of the neuron.
Other input to the dendritic tree might vary the amplitude of the resulting
periodic input current on its way to the soma and thus tune the preferred
frequency to that of the stimulus or away from it.

It is most remarkable that the optimal signal-to-noise ratio is practically
independent of the stimulus amplitude and merely depends linearly on the base
current. The noise level may thus be fixed independent of the processed signals,
making the processing scheme suggested above feasible. The value σopt

r ≈ 2/3
of the optimal relative noise amplitude is in good agreement with the finding
by Kempter et al. (1998) that neuronal coincidence detectors operate best if
the base potential is roughly one noise amplitude below threshold, i.e. σr ≈ 1.

The range of optimal frequencies in the discrimination mode spans roughly
one octave. The absolute value of the optimal frequency depends on the mem-
brane time constant τm of the neuron under consideration. The latter might
be as low as 200µs for specialized afferent neurons, but reach 10 ms in cortical
neurons. Signal processing might thus benefit from stochastic double reso-
nance throughout entire range of frequencies observed in the central nervous
system, from slow theta-waves of the EEG to phase-locked responses in the
kilohertz range in the auditory pathway.
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Related work and generalization

A recent series of publications suggests that stochastic double resonance is not
a peculiarity of the Ornstein-Uhlenbeck neuron, but a phenomenon nearly as
universal as classic stochastic resonance. Berdichevsky and Gitterman (1996)
found a resonance with respect to stimulus frequency in noise-induced hop-
ping in a piecewise constant bistable potential—a rather unphysiological sys-
tem. Liu et al. (1999) and Kanamaru et al. (1999) have since demonstrated
stochastic double resonance in the noisy Hindemarsh-Rose and FitzHugh-
Nagumo neuron models, respectively. That a model as simple as the Ornstein-
Uhlenbeck neuron exhibits the same stochastic double resonance effects found
in these complex nonlinear models of neuronal membrane dynamics once again
suggests the use of this simpler model. Indeed, the simplicity of the model al-
lowed for a detailed and rewarding analysis of the parameter dependencies
of stochastic double resonance, while the former studies were based on sim-
ulations. Simplification must not be carried too far: stochastic resonance in
stimulus frequency can occur only in systems which have a timescale that is to
be matched. Response properties of level crossing detectors, e.g., which gener-
ate an output spike every time the membrane potential crosses the threshold
in upward direction, but do not influence the potential in any way, are inde-
pendent of the signal frequency for lack of an internal timescale (Gingl et al.
1995).

Gammaitoni’s original demonstration of stochastic resonance in frequency
(1995)—or bona fide resonance as he called it—has been criticized on method-
ological grounds by Choi et al. (1998), but a new experimental report in the
spirit of Gammaitoni avoids the pitfalls (Giacomelli et al. 1999). It thus pro-
vides clear-cut evidence that stochastic double resonance is indeed a physical
and not just a mathematical phenomenon.

Shimokawa et al. (1999b) recently presented a closely related study on sto-
chastic resonance in periodically driven Ornstein-Uhlenbeck neurons. They
employ the same Markov chain method as developed independently in this
thesis to determine the stationary phase density. Instead of computing the
power spectrum directly from the transition matrix as suggested here, they
resort to an ensemble of identical, independent neurons. The superposition of
the spike trains fired by all these neurons is an inhomogeneous Poisson process
with a time-dependent rate. The rate modulation within each stimulus period
is given by the stationary phase density in this case. This yields precisely the
model expression SNR ∼ νr2 for the signal-to-noise ratio. Results as reported
by Shimokawa et al. (1999b) are in agreement with those presented here, but
more limited. The authors do not observe stochastic double resonance, most
likely because they adapt the stimulus amplitude such that q/

√
1 + Ω2 is held

constant for all frequencies.
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Stemmler (1996) concluded that different “flavors” of stochastic resonance
are intimately related. In particular, he showed that the probability of correct
detection of a constant signal, the mutual information between an aperiodic
signal and the spike train it elicits, and the signal-to-noise ratio of a spike
train elicited by sinusoidal stimulation can all be expressed in terms of the
lower bound of the Fisher information (Cover and Thomas 1991). Thus one
may surmise that the results derived here for sinusoidal stimulation will at least
qualitatively hold for aperiodic signals as well, and are indeed ubiquitous.

Perspectives: Neurocomputing with noise

Noise endows neurons with the capability to selectively transmit stimuli in
spike trains of varying regularity. This may contribute to neural information
processing as follows. Each pathway of processing has a small number, or pool,
of neurons at each stage, all conveying essentially the same signal. A neuron
will project its output to many neurons in the corresponding pool of the sub-
sequent stage, while receiving input from a large number of neurons in the
antecendent pool. Besides input from within the chain of pools, each neuron
receives a tremendous number of uncorrelated inputs: proportions might eas-
ily reach 100 neurons in a pool compared to 10000 uncorrelated inputs. Such
chains of neuron pools are known as synfire chains (Abeles 1991; Herrmann
et al. 1995). Pulse packets—barrages of spikes—can propagate through a chain
provided they are sufficiently strong and “tight”, i.e. synchronized (Diesmann
et al. 1999). If the synchronization of output spikes can be varied by modula-
tion of the input spike amplitudes—or rather of the amplitudes of the effective
current fluctuations at the soma—pulse packets may be gated on their way
through the processing pathways by de- and re-synchronization. Indeed, Aert-
sen et al. (1989) and Boven and Aertsen (1990) concluded from simulation
studies that the “effective connectivity” of neurons is modulated by uncorre-
lated background activity in a neural network. Stochastic double resonance
as demonstrated here might thus prove to be the key to neurocomputing with
synfire chains.

Stochastic resonance is sometimes criticized for not being perfect (DeWeese
and Bialek 1995; Galdi et al. 1998; Tougaard 1999): optimal signal detectors
will do better without noise than devices based on stochastic resonance. But
this comes at a price—a control mechanism is required to adapt the detector
to the task at hand. Engineers might be willing to pay the price, nature most
certainly is not, given the extravagant constraints on building a brain: The
brain must be able to build itself from the scant blueprint provided by the
genes; it should function reliably over the course of a century, with facilities
to compensate all but the most severe injuries; and it has to receive, analyze,
store, retrieve, compare and emit signals all at once; above all, it has to be
portable and consume as little energy as possible. If we were not carrying a
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brain on our shoulders day after day, we would steadfastly deny its existence:
The conditions listed just cannot be fulfilled by any feat of ingenuity—without
noise, that is. A decade of intense research on stochastic resonance, to which
this thesis is but a modest contribution, has shown that noise can help to forge
the required compromises as it provides for sub-optimal, but highly efficient
signal processors. It is thus that noise aids neural information processing.



Appendix A

Numerical Evaluation of
First-Passage-Time Densities

Schrödinger’s renewal Ansatz, Eq. (2.36), reduces the computation of the first-
passage-time density of the Ornstein-Uhlenbeck process to the numerical so-
lution of the Abel integral equation

g(t) =

∫ t

0

K(t, s)√
t− s

F (s) ds . (A.1)

The inhomogeneity g(t) and the kernel K(t, s) are as defined by Eqs. (2.34)
and (2.35). The existence of a unique solution F (t) is assured, see Chapter 2.2.

Below, a block-by-block method for the computation of F (s) is presented,
which is a corrected form of the method given in Chapter 10.3 of Linz (1985).
It is validated in Section A.2.

A.1 Algorithm

Starting from a known initial point F0 = F (t = 0), the block-by-block method
iteratively computes the solution Fj = F (tj) at equidistant points tj = jh in
blocks of two points. Let F0, F1, . . . , F2m be known, so that F2m+1 and F2m+2

are to be computed as next block. Then, Eq. (A.1) can be written as

g2m+` =

∫ t2m+`

0

K(t2m+`, s)F (s)√
t2m+` − s

ds = I2m,` +

∫ t2m+`

t2m

K(t2m+`, s)F (s)√
t2m+` − s

ds ,

(A.2)

with ` = 1, 2. The first term on the right-hand side contains only the known
portion of F (t) for s < t2m. Dividing the range of integration into m intervals
of length 2h and interpolating K(t, s)F (s) quadratically within each interval,
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one obtains after some algebra

I2m,` =

∫ t2m

0

K(t2m+`, s)F (s)√
t2m+` − s

F (s) ds =
m−1
∑

j=0

∫ 2h

0

ym,`,j(s)√
t2m+` − t2j − s

ds

=
2m
∑

k=0

wm,`,kK2m+`,kFk .

(A.3)

Here, Kn,k = K(tn, tk), and

ym,`,j(s) = 1
2
(s− h)(s− 2h)K2m+`,2j F2j

−s(s− 2h)K2m+`,2j+1 F2j+1

+1
2
(s− h)(s− 2h)K2m+`,2j+2 F2j+2 .

This leads to the integration weights1

wm,`,k =



























α2m+`(h) k = 0

α2m+`−k(h) + γ2m+`−k+2(h) k = 2, 4, . . . , 2m− 2

γ`+2(h) k = 2m

β2m+`−k+1(h) k = 1, 3, . . . , 2m− 1

(A.4)

where

αn(z) =

√
z

2

∫ 2

0

(1− x)(2− x)√
n− x

dx (A.5a)

βn(z) =
√
z

∫ 2

0

x(2− x)√
n− x

dx (A.5b)

γn(z) =

√
z

2

∫ 2

0

x(x− 1)√
n− x

dx (A.5c)

The integral over the unknown portion of the function in Eq. (A.2), i.e.
over [ t2m, t2m+` ], is evaluated in the same manner. For ` = 1, the value of
F (s) at the interval midpoint t2m+ 1

2
is obtained by quadratic interpolation

F2m+ 1
2

= 3
8
F2m + 3

4
F2m+1 − 1

8
F2m+2 .

Inserting into Eq. (A.2), one obtains two linear equations for the desired func-

1In the corresponding equation (8.35) in Linz (1985), p. 137, the different cases are not
sufficiently separated. This is corrected here.
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tion values F2m+1 and F2m+2

g2m+1 − I2m,1 = α1(h
2
)K2m+1,2m F2m

+ β1(h
2
)K2m+1,2m+ 1

2

[

3
8
F2m + 3

4
F2m+1 − 1

8
F2m+2

]

+ γ1(h
2
)K2m+1,2m+1 F2m+1 ,

g2m+2 − I2m,2 = α2(h)K2m+2,2m F2m

+ β2(h)K2m+2,2m+1 F2m+1

+ γ2(h)K2m+2,2m+2 F2m+2 .

(A.6)

Solving for the unknowns yields the iteration rule (m ≥ 1)

F2m+1 =
1

Γ

[

1

6
K2m+2,2m+2 S1 +

1

36
√

2
K2m+1,2m+ 1

2
S2

]

,

F2m+2 =
1

Γ

[

−2

9
K2m+2,2m+1 S1 +

1

6
√

2
(K2m+1,2m+ 1

2
+K2m+1,2m+1)S2

]

,

(A.7)

where

Γ = (K2m+1,2m+ 1
2

+K2m+1,2m+1)K2m+2,2m+2 + 2
9
K

2m+1,2m+
1
2
K2m+2,2m+1 ,

S1 = 15
2
√
h
g2m+1 − Ĩ2m+1 − (K2m+1,2m + 3K2m+1,2m+ 1

2
)F2m ,

S2 = 15
2
√
h
g2m+2 − Ĩ2m+2 −

√
2K2m+2,2m F2m ,

Ĩ2m,` =
2m
∑

k=0

w̃m,`,kK2m+`,k Fk , ` = 1, 2 ,

w̃m,`,k =



























α̃2m+` k = 0

α̃2m+`−k + γ̃2m+`−k k = 2, 4, . . . , 2m− 2

γ̃` k = 2m

β̃2m+`−k k = 1, 3, . . . , 2m− 1 .

Finally

α̃n = 15
2
√
h
αn(h) = −(4n− 3)(n− 2)

3
2 + (4n2 − 15n+ 15)

√
n , (A.8a)

β̃n = 15

2
√
h
βn+1(h) = (8n+ 12)(n− 1)

3
2 − (8n− 12)(n+ 1)

3
2 , (A.8b)

γ̃n = 15
2
√
h
γn+2(h) = (4n+ 3)(n+ 2)

3
2 − (4n2 + 15n+ 15)

√
n , (A.8c)

with α, β, and γ from Eq. (A.5).
The precision of the algorithm is limited by that of the coefficients given in

Eq. (A.8). While each of the two summands in α̃n, β̃n, and γ̃n are ∼ O(n5/2),
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h 1.0·100 2.0·10−1 1.0·10−1 1.0·10−2 1.0·10−3 4.0·10−4

∆r 3.8·10−2 5.0·10−4 7.3·10−5 8.2·10−8 8.2·10−11 5.2·10−12

tCPU[s] 4.3·10−1 4.2·101 2.5·102

Table A.1: Error ∆r of the block-by-block method for constant input vs. analytical solution
of Eq. (A.10) for different step sizes h. The bottom line gives the required CPU time in
seconds, with empty fields indicating tCPU < 0.1s. The noise amplitude was σ = 0.1 and
0 ≤ t ≤ 20. All computations were performed on a COMPAQ XP1000 workstation.

their differences are only∼ O(1/
√
n). Using standard floating-point arithmetic

with 16-digit precision, the coefficients will have only five significant digits.
Therefore, the coefficients have been tabulated to 20 significant digits using
the MAPLE computer algebra package (Plesser 1999).

The block-by-block algorithm requires 4m+8 kernel evaluations to compute
points F2m+1 and F2m+2 of the solution. The number of kernel evaluations are
required to compute the solution at M points thus grows ∼ M2. Due to the
complicated structure of the weights and the recursive nature of the algorithm,
no detailed error analysis is known for this method (Linz 1985, Ch. 10.4).

This algorithm has been implemented for general inhomogeneity g(t) and
kernel K(t, s) as program abel. The code has been designed to be as clear as
possible. For the Ornstein-Uhlenbeck process, optimized versions have been
developed for both periodic (p fptd) and aperiodic (ap fptd) stimuli. These
implementations enforce non-negative solutions F to improve numerical sta-
bility. Source code for both programs is available in electronic form (Plesser
1999).

A.2 Validation

Constant input

The first-passage-time density of the Ornstein-Uhlenbeck process for input of
the form

I(t) = 1 + 2c et (A.9)

is given by

ρ(t) =
2 e2t

√
πσ2 (e2t−1)

3
2

exp

[

−(1 + c− c e2t)
2

σ2 (e2t−1)

]

. (A.10)

Here, σ is the input noise level, the reset voltage is v(t = 0) = vR = 0 and
the absorbing threshold is at v = 1; see Chapter 3.2. For c = 0, this FPTD
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h 2.0·10−1 1.0·10−1 4.0·10−2 2.0·10−2 1.0·10−2 4.0·10−3

(a) 2.3·10−4 4.4·10−5 3.3·10−6 4.2·10−7 5.2·10−8 3.3·10−9

(b) 5.3·10−5 7.0·10−6 4.6·10−7 5.7·10−8 7.0·10−9 4.4·10−10

(c) 8.3·10−4 1.7·10−4 1.4·10−5 1.9·10−6 2.4·10−7 1.5·10−8

(d) 5.5·10−4 9.6·10−5 7.3·10−6 9.4·10−7 1.2·10−7 7.4·10−9

(e) 5.7·10−2 3.4·10−2 1.3·10−2 2.7·10−3 4.5·10−4 3.2·10−5

(f) 1.3·10−2 6.4·10−3 7.0·10−4 8.5·10−5 1.4·10−5 9.7·10−7

Table A.2: Error ∆r of the FPT density ρj from the block-by-block method for periodic
input at different step sizes h. Input was slow (a), (b), fast (c), (d), and suprathreshold
(e), (f) with weak noise for the first, strong noise for the second of each pair. The error
given is relative to the numerical solution obtained with h = 2 · 10−3. The FPT density
was computed for 0 ≤ t ≤ 100 in all cases. Parameters: (a) µ = 0.9, q = 0.1, Ω = 0.05/π,
σ = 0.001, (b) µ = 0.9, q = 0.1, Ω = 0.05/π, σ = 0.01, (c) µ = 0.9, q = 0.1, Ω = π, σ = 0.05,
(d) µ = 0.9, q = 0.1, Ω = π, σ = 0.1, (e) µ = 1.05, q = 0.5, Ω = 0.1/π, σ = 0.1, (f) µ = 1.05,
q = 0.5, Ω = 0.1/π, σ = 1.

can be evaluated directly by p train, whence this case is used as reference to
validate the program.

Table A.1 gives the root mean square error

∆r =

√

√

√

√

N
∑

j=1

(ρj − ρ(tj))
2 (A.11)

of the numerical solution ρj obtained from p train against the analytical so-
lution ρ(t) of Eq. (A.10) for a wide range of step sizes h. The error decreases
nearly with the third power of the step size (∆r ∼ h2.92, correlation coef-
ficient r > 0.999), while the required CPU time grows inversely quadratic
(tCPU ∼ h−2). The implementation is thus validated for constant input.2

Periodic input

No first-passage time densities have been published for the Ornstein-Uhlenbeck
process with time-dependent input. Thus, one may only test for the conver-
gence of the algorithm as the step size is refined, and check for consistency with
simulated spikes trains. The former is done here, while the latter is postponed
to Appendix B.

The test stimulus used is I(t) = µ + q cos Ωt. Results are given in Ta-
ble A.2 for six different input conditions, comprising slow and fast, sub- and
suprathreshold currents, both for weak and strong noise. Across all conditions

2Linz (1985) mentions an error scaling ∼ h 3
2 in Chapter 10.4, which is obviously wrong,

compare Table 10.3 of that book.
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the error scales roughly as ∆r ∼ h2.9 with correlation coefficient r > 0.999,
indicating stability. As was to be expected, the error is larger for weak noise
and/or fast stimuli than for strong noise and/or slow stimuli. But even in the
“worst case” (e) in Table A.2, i.e. a suprathreshold stimulus combined with
weak noise, does the error decay nicely for h < 0.2. The algorithm is thus
well suited to the numerical computation of first-passage-time densities of the
modulated Ornstein-Uhlenbeck process.

When choosing the stepsize, two points should be kept in mind. First of
all, the FPT density will be modulated on the timescale of the input period T ,
requiring h � T . This timescale is set by the cut-off frequency for aperiodic
input. Secondly, the FPT density has a sharp peak for suprathreshold input
in combination with a small noise amplitude or for very strong noise. The
stepsize may have to be very small to resolve this peak properly and to avoid
numerical instabilities.
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Spike Train Simulation

Neuronal spike trains can be simulated efficiently using a method proposed by
Gillespie (1996). It exploits the fact that the moment equations for the un-
bounded Ornstein-Uhlenbeck process can be solved analytically. This permits
the use of—in principle—arbitrarily large time steps. In the presence of an
absorbing boundary, an adaptive stepsize algorithm must be used.

B.1 Algorithm

A train of spikes at times t0, t1, . . . , tj is generated by simulating the trajec-
tory of the membrane potential v(t) as defined by Eq. (2.20) from the reset
potential vR to the threshold Θ = 1. Upon threshold crossing, the current
time is recorded as time of the spike, the potential reset, and the next interval
simulated. The algorithm for the simulation of the subthreshold membrane
potential is derived and tested here.

The evolution of the subthreshold membrane potential in between two
spikes is simulated by numerical integration of the Langevin Eq. (2.20a)

v̇(t) = −v(t) + g(t) + σξ(t) , 〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t′)〉 = δ(t− t′) ,

from v = vR to v = Θ = 1.
In the absence of an absorbing threshold (Θ =∞), the Langevin equation

can be integrated formally, yielding for arbitrary step size h > 0

v(t+ h) =

[

v(t) +

∫ h

0

g(t+ s) es ds

]

e−h +

[∫ h

0

ξ(t+ s) es ds

]

e−h .

The white noise ξ(t) is correlated neither to the potential v(t) nor the input
g(t), so that mean and variance of v(t+ h) become

〈v(t+ h)〉 = [v(t) + Ĝ(t, h)] e−h , (B.1)

Σ2(h) =
〈

v(t+ h)2
〉

− 〈v(t+ h)〉2 =
σ2

2
(1− e−2h) , (B.2)
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with Ĝ(t, h) =
∫ h

0
g(t+ s) es ds. Since the potential v(t+ h) depends linearly

on the Gaussian process ξ(t), the mean and variance completely describe the
distribution of v(t+ h).

Thus, starting from v0 = vR at t0 = t̂, the iteration rule

vn+1 = 〈v(tn + hn)〉+ nrm(0,Σn) = [vn + Ĝ(tn, hn)] e−hn +nrm(0,Σn) ,

(B.3)

tn+1 = tn + hn

Σn = Σ(hn) = σ

√

1− e−2hn

2

will generate a realization of the unbounded Ornstein-Uhlenbeck process. Here,
nrm(0,Σn) is a normally distributed random number with zero mean and vari-
ance Σn (Knuth 1998). The stepsize hn > 0 may vary from step to step.

The argument given above does no longer hold precisely in the presence of
an absorbing threshold at Θ < ∞. But as long as the membrane potential is
sufficiently far below threshold to make a threshold crossing within the next
time step practically impossible, the iteration rule of Eq. (B.3) will introduce
only negligible error. For subthreshold input,1 threshold crossings can only be
induced by the random term in the iteration rule. Thus, if the stepsize hn is
chosen such that

Σn = Σ(hn) ≤ Θ− vn
ϑ

,

the probability of a threshold crossing in the next step will be less than (1−
erf ϑ)/2. To avoid an infinite slowing down of the simulation as the threshold
is approached, a lower bound hmin of the stepsize is required. The upper bound
hmax is given by the fastest timescale of the input g(t). This yields the following
rule for the stepsize

hn =























hmin vn > Θ− ϑΣ(hmin) ,

−1

2
ln

[

1− 2

(

Θ− vn
ϑσ

)2
]

vn > Θ− ϑΣ(hmax) ,

hmax vn < Θ− ϑΣ(hmax) .

(B.4)

The parameters ϑ and hmin determine the degree to which the validity of the
approximation is enforced. For ϑ = 5, which has been used for all simulations
presented here, the threshold-crossing probability is < 10−6, i.e. the influence
of the threshold is irrelevant as long as vn ≤ Θ − ϑΣ(hmin). The choice of
the lower bound hmin is discussed below. The upper bound has typically been

1For very strong suprathreshold input (g(t) � Θ), the upper bound hmax may have to
be reduced to assure that vn + Ĝ(t, h) < Θ. Such cases have not been studied here.
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Figure B.1: Distribution of simulated interspike intervals (boxed line) and predicted den-
sity ρ(t|ψ = 0) (smooth line) for case (d) of Table B.1; the first three modes are shown in
detail in the inset. The histogram is based on 20000 spikes, and the bin width is δτ = 0.1.

set to hmax = 0.01, while the fastest stimuli studied had periods of T = 0.4.
It is essentially this bound that determines the computer time required for
simulations.

It is important to note that the stepsize has to be chosen before a step is
executed, and that a step that has been executed must not be rejected after
a threshold crossing was detected: This would introduce correlations in the
random numbers drawn in the iteration process.

The simulation algorithm is implemented as program p train for periodic
input and as program ap train for aperiodic input as defined in Chapter 2.3.
Both programs are available in electronic form (Plesser 1999).

B.2 Validation

The simulation algorithm is tested for the same periodic stimuli employed
in the validation of the block-by-block method in Appendix A.2. For each
parameter set, 20000 interspike intervals were simulated and compared to true
ISI density ρ(τ |0) given by Eq. (2.33). The example shown in Fig. B.1 indicates
excellent agreement.

A quantitative test of the goodness-of-fit is provided by the Kolmogorov-
Smirnov statistic Dn (Stuart, Ord, and Arnold 1999). Let τ(1) < τ(2) < . . . <
τ(n) be the simulated intervals from p train ordered by rank, with empirical
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hmin 1.0·10−2 1.0·10−3 1.0·10−4 1.0·10−8 1.0·10−10

(a) 6.4·10−2 1.6·10−2 1.1·10−2 9.8·10−3 4.5·10−3

(b) 4.3·10−2 1.7·10−2 4.8·10−3 6.0·10−3 4.2·10−3

(c) 5.9·10−2 2.2·10−2 8.5·10−3 4.6·10−3 8.8·10−3

(d) 4.5·10−2 2.2·10−2 1.5·10−2 6.1·10−3 4.9·10−3

(e) 6.8·10−2 1.6·10−2 6.8·10−3 5.0·10−3 5.4·10−3

(f) 5.4·10−2 2.2·10−2 8.1·10−3 1.0·10−2 6.7·10−3

Table B.1: Kolmogorov-Smirnov statistic Dn for 20000 interspike intervals generated by
p train at different minimal step sizes hmin. The hypothesis that intervals are distributed
according to ρ(τ |0) is accepted at the 1% level if Dn < 0.0115. Input was slow (a), (b), fast
(c), (d), and suprathreshold (e), (f) with weak noise for the first, strong noise for the second
of each pair. For precise parameters, see Table A.2.

distribution function

Sn(x) =















0 x < τ(1) ,

r
n

τ(r) ≤ x < τ(r+1) ,

1 τ(n) < x ,

and let P (t|ψ = 0) =
∫ t

0
ρ(τ |ψ = 0) dτ be the distribution function obtained

from p fptd. The Kolmogorov-Smirnov statistic is then defined as

Dn = sup
t≥0

∣

∣

∣Sn(t)− P (t|ψ = 0)
∣

∣

∣ .

The hypothesis that the n simulated intervals τj are distributed according
to ρ(t|ψ = 0) is rejected at the 1% level if

√
nDn > 1.63 (Bronstein and

Semendjajew 1989). For the given sample size of n = 20000, this corresponds
to Dn > 0.0115. The true distribution ρ(τ |ψ = 0) is computed with p fptd at
very high resolution.

Results are given in Table B.1. For all six sample cases, the simulated
spike trains and the distribution ρ(τ |0) are at disagreement for hmin > 10−4

at the 1% level. For hmin ≤ 10−8 the Kolmogorov-Smirnov test indicates
agreement between simulation and theory even for fast and suprathreshold
input. Therefore, hmin = 10−9 has been employed in the simulations reported
here.

As the block-by-block method and the simulation algorithm yield the same
results independent of each other, these methods cross-validate each other and
can be considered reliable.
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Braun, H. A., K. Schäfer, and H. Wissing (1984). Theorien und Modelle zum
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