
The Markov Classes Package

Instructions for Users

Version 1.3

Hans Ekkehard Plesser (October 2002)

Chapter 1

Generalities

1.1 Prerequisites

The source code an documentation for the MarkovClasses package is available
from http://arken.nlh.no/~itfhep/software. Please download MarkovClasses.tgz
from there and unpack it. The package assumes that you have the GCC compiler
(http://gcc.gnu.org).

1.2 Introduction

The theory behind the logarithmic classes is explained in Fricke and Wendt
(1995, Sec. IV), the theory behind the discrete classes in Plesser and Wendt
(1996). Preprints of both papers are included in the MarkovClasses package.
The instructions given here assume that you are familiar with the theory behind
the logarithmic or discrete class algorithms.

These instructions should provide you as a programmer of simulation soft-
ware with the extra information necessary to successfully employ the Log-
classDisclass routines in your code. At first, an introduction to the data
structure is given and afterwards the functions are explained. At the end of
these instructions you will find a sample program that demonstrates the use of
the Package.

First of all, we need to clarify some terms that will be used throughout this
document and the source code, but that is not always consistent with Fricke &
Wendt.

• event: An event is a single step of a Markov process. When simulating
conformation changes of polymers as a Markov process, e.g., an event may
be the twisting of one binding by a certain angle. In order to simulate such
a Markov process, each possible event must be represented, i.e. it must be
assigned a probability and information about what kind of event it is, like
the number of a binding and the tilting angle. This information is stored

2

http://gcc.gnu.org
http://arken.nlh.no/~itfhep/software

The Markov Classes Package — Instructions for Users 3

in so–called event descriptors . Obviously, there must be a descriptor for
each possible event. In many cases, though, it might be easier to call an
entire set of possible Markov steps an event, as it is done by Fricke&Wendt.
They call all steps that originate from a cell of their grid one event , so
cell and event become synonymous; thus, Logclass/Disclass just takes
care of selecting cells in which things are to happen and the user–program
decides afterwards which of the possible steps (e.g. diffusion to any next
neighbor, chemical reaction with another molecule in the same cell) takes
place. In this case the reactivity of the event/cell is the sum of the rates
of all possible steps originating from the cell.

• ued: User’s event descriptor, represents each possible event within the
user–program’s data. These descriptors contain the information required
to “execute” an event, e.g. a list of neighboring cells. It must contain a
pointer to its event’s led.

• led: Logclass event descriptor, represents a possible event within the
Logclass data and contains the information required to select an event
for “execution”. It contains a pointer to its event’s ued.

• ded: Disclass event descriptor, equivalent to led.

• rate: the probability for an event to happen per unit time, assuming an
exponential FPT–distribution with mean 1/r. Class and total rate are
the sums of their elements’ rates. You may occasionally find the term
“reactivity” instead of rate.

• nullclass: Besides the usual classes of possible events, there is a pseudo-
class nullclass, to which all impossible events are assigned, e.g. immo-
bilized adatoms in a study of surface dynamics. To allow for efficient
simulation, you may assign any numerical value (which is not an index of
a usual class) as index of the nullclass.

1.3 Some words of caution

Do not rely on anything stated in this document or in the comments included
in the source code. We have tried our best, but we do not guarantee for anything!
The code included has been tested extensively on various problems, but there
may still be bugs around.

Think twice before you change any of the code included, because even
though it might be flawed, chances are pretty good to screw up some of the
delicate memory management included! For the same reason, do not manipulate
the data stored in the Logclass/Disclass data structures in any way but
calling the appropriate Logclass/Disclass functions.

Do not use variable names beginning with dlc or dc in your user–program
as all of Logclass’/Disclass’ type and function names begin with these magic
letters (as an abbreviation for dual logarithmic/discrete classes).

Chapter 2

Logarithmic Classes

2.1 Data structures

As explained by Fricke&Wendt, a program using Logclass requires two sepa-
rate sets of data, one provided and maintained by the user–program (ueds) and
one supplied by the Logclass routines, consisting of leds and some overhead.
The connection between those sets of data is made by pointers connecting the
two descriptors belonging to each possible event.

The Logclass data structure has three “layers”. On top is a single variable
of type dlc global that contains — besides some other information — pointers
to the array of class descriptors. The latter form the second layer, an array
containing one element of type dlc class per logarithmic class. Each of these
class descriptors points to the class’ event–array Fz[], containing one led (of
type dlc event) per event in the class plus “free” leds to be assigned to future
members of the class.

2.1.1 User-program’s data

typedef struct { /* whatever you want */
dlc_event *led;

} user_event_descriptor;

As the name says, it is up to you to design this data type with just a few
things to keep in mind. You must include a pointer of type dlc event* in the
structure, so the ued can point to its associated led; return values of some
Logclass functions have to be assigned to this pointer (see below), but it
must not be manipulated otherwise. The rate of the event described should
not be stored in the ued, as it is already present in the led and may be read
using ued->led->r. For easy access and flexibility, an array of ueds should be
allocated using calloc; after the ueds have been assigned leds using dlc enter,
the ueds must not be moved in memory, because this would destroy the link
ued↔ led.

4

The Markov Classes Package — Instructions for Users 5

2.1.2 dlc global

typedef struct DLC_GLOBAL { dlc_class *cbeg, *cend, *first;
int min_class, num_classes;
size_t max_events;
double r, eps;
long int number_of_reorgs;
void (*event_moved)(dlc_event *);
char err_file[NAME_MAX];
void (*err_proc)();
void *err_ptr;

} dlc_global;

This data structure contains the global data needed to access all of the class
and event data. It has to be initialized by dlc init (see below) before the
simulation starts. The user–program should allocate memory for this structure
and provide a pointer to it, since all Logclass functions expect a pointer to
this structure as first argument. An appropriate definition would thus be

dlc_global global_data,
*global_data_ptr = &global_data;

This data structure is essentially private, i.e. the user should keep her/his hands
off its contents, except for members r, eps and number of reorgs, which may
be read by the user–program. r is the total rate which determines the random
time step according to

∆t = −1
r

log(1− rnd)

where rnd is a uniformly distributed random number, rnd ∈ [0, 1), or, coded
in C using Fricke/Knuth’s random generator,

simulation_time += exp_rand55() / global_data_ptr->r; .

eps is the lowest rate not treated as zero and might be used to count the number
of thus “impossible” events. number of reorgs counts the reorganizations of
Logclass’ event data structure and thus helps to monitor performance.

2.1.3 dlc class

typedef struct DLC_CLASS{ dlc_event *bot, *top;
double r, r_max, eps;
struct DLC_CLASS *next;

} dlc_class;

This data structure is private, i.e. the user should keep her/his hands off its
contents.

The Markov Classes Package — Instructions for Users 6

2.1.4 dlc event

typedef struct DLC_EVENT{ void *ued;
double r;

} dlc_event;

For each Markov event with a non–zero probability (dlc event.r >= dlc global.eps)
to occur, there is one led of type dlc event. The member ued provides the
link led→ ued, which is maintained by the Logclass routines. ued is of type
void*, so that the actual ued structure in the user–program can have any name
and contents. When using dlc event.ued, it has to be typecast properly. The
user–program must not manipulate the led data.

2.2 Public functions

All functions contained in the logclass package take as their first argument a
pointer to the logclass global data structure dlc glob *dlc that contains all
relevant information after initialization by dlc init. This argument will not
be discussed again in the descriptions of the individual functions.

2.2.1 dlc init

void dlc_init(dlc_global *dlc, size_t num_leds, double min_reac,
double max_reac, long rand_seed, void (*event_moved)(),
char err_file[], void (*err_proc)(), void *err_ptr);

This function must be called before any other Logclass function, as it allocates
memory and sets up links. The parameters passed to dlc init are checked to
some degree and an error message is issued prior to program termination if inap-
propriate parameters are given or not enough memory is available. Parameters
are
dlc glob *dlc pointer to Logclass global data, which has to be defined by

the user program (see above, dlc glob)
size t num leds number of leds to be allocated
double min reac expected lowest rate
double max reac expected highest rate
long rand seed random seed to be used
void (*event moved)() pointer to function updating link ued→ led
char err file[] file to which error messages shall be written
void (*err proc)() pointer to function which is to be called after an error message

has been issued
void *err ptr err proc will be called with argument err ptr, argument, so

the user can pass a reference to his/her data to the ”wrap up
routine”; if you have no such pointer, pass NULL.

• num leds should be the number of possible events, e.g. the number of cells
in a grid or the number of bindings in a polymer, times a “memory factor”

The Markov Classes Package — Instructions for Users 7

(usu. 2 − 5), depending on the memory available. The extra memory is
spread over all classes (uniformly at the start, proportional to current
size by later re–organizations), so that events that change classes due to
modified rate can simply be placed at the end of the array of leds of their
new class. If too few leds are allocated, “busy” classes will frequently be
filled to their limit, leading to time–consuming memory reorganizations
that move all leds. Thus, you should increase your “memory factor”
if your program requires more than one reorganization per 105 Markov
events (you can get the number of reorganizations from dlc global).

• min reac and max reac give lower and upper limits to the range of rates
to be handled; additional classes are added at both ends of the range
according to the preprocessor constants DLC EXTRA BOTTOM/TOP, so the
range that can be handled is given by ε ≤ r < rmax with

ε := 2blog2 min reacc−DLC EXTRA BOTTOM−1

rmax := 2blog2 max reacc+DLC EXTRA TOP+1

where bxc is the largest integer not greater than x.

To avoid round–off errors, the ratio between minimum and maximum rate
should be greater than machine precision, i.e. ε/rmax ≥ DBL EPSILON ≈
10−16 (for 64–bit doubles).

rmax is an absolute upper limit: as soon as a single event reaches a rate
greater than rmax, the simulation is terminated, because no class is avail-
able to store this event. Thus, if anything goes wrong at the upper end,
you will notice. The lower limit is much more dangerous in this respect,
as all events with rates below ε (stored in global data.eps) will be con-
sidered impossible, i.e. their rate will be considered as 0 and so they do
not get a led and therefore they cannot be selected to happen (for details,
see dlc safechange). This might be sensible, as no particles can diffuse
out of or react within an empty cell, e.g., so the cell’s rate actually is zero.
If there is a large number of events with 0 < r < ε, though, the simulation
might produce wrong results, as the total rate becomes too small and thus
time steps too large and events with high rates are selected too often. If
in doubt, you might want to keep track of the number of “impossible”
events using global data.eps.

• rand seed is used as seed for the random generator. If it is set to 0L, the
clock will be used as seed.

• event moved() is explained below. When calling dlc init, include the
function name in the parameter list without parentheses.

• err file[] must not be an empty string, but a valid file name.

• err proc() is a function that is called after the Logclass’ own error
handler has written its message to err file. In this way, control is re-
turned to the user program prior to program termination, so that data

The Markov Classes Package — Instructions for Users 8

may be saved. The function passed as err proc must be of type void and
may not take any arguments. It may contain its own exit call, but that
is not required. Important: err proc is not called if an error occurs in
dlc init, since no simulation data is around then.

dlc init may terminate issuing one of the following error messages:

• Invalid parameter to dlc init: min reac > 0 req ...
The minimum rate must be greater than zero

• Invalid parameters to dlc init: min reac = ...
ε/rmax ≥ DBL EPSILON must be fulfilled

• Initialization warning: On the average you have less than two
events per class.
The considerable administrative overhead required for the logarithmic
classes makes sense only for large systems.

• Initialization error: unable to allocate memory ...
Too bad, ey Looks like you’ll have to get along with a smaller system
or dig up some bucks to by more RAM.

2.2.2 event moved

The links ued→ led and led→ ued between user–progam and Logclass data
must be maintained under all circumstances. This is easy for led→ ued, as the
ueds are not moved in memory. It is also quite simple to maintain ued→ led
when an event is entered or moved using dlc enter and dlc safechange, as the
pointer to the new led is returned. Problems occur once the array of leds has
to be re–organized and when a led has to be moved to fill a gap in a led–array
Fz[]. In principle, the link ued → led could be maintained easily even in this
case writing

moved_events_new_led->ued->led = moved_events_new_led;

where moved events new led is of type dlc event*. Unfortunately, this re-
quires the ued to contain an element led, interfering with the idea that Log-
class should be as autonomous and flexible as possible.

To circumvent this problem, the user–program has to provide its own func-
tion to update the ued→ led link. This function must

• be of type void,

• take as a single argument of type dlc event* the pointer to the led that
changed,

• “follow” the led→ ued link and update ued→ led.

Thus, it will usually look like

The Markov Classes Package — Instructions for Users 9

void my_u2l_updating_function(dlc_event *new_led)
{

((user_event_descriptor *) new_led->ued)->led = new_led;
}

2.2.3 dlc clear

void dlc_clear(dlc_global *dlc)

This function returns all dynamic memory allocated by dlc init to the system.
It should be called before leaving the simulation program. Its only argument is
a pointer to the Logclass global data structure.

2.2.4 dlc enter

dlc_event *dlc_enter(dlc_global *dlc, void *ued, double r)

This function should be called after Logclass has been initialized using
dlc init and the system’s ueds have been prepared. At this stage, the events
are placed in the logarithmic classes calling dlc enter once for each ued: the
function determines the event’s class according to its rate r, assigns a led to
the event and creates the link led→ ued. It returns the pointer to the led, so
the link ued→ led can be set at once using

ued->led = dlc_enter(global_data, ued, rate(..., ued));

where rate(..., ued) is a function provided by the user program and return-
ing the rate of the event described by ued as a double value.

2.2.5 dlc rand

dlc_event *dlc_rand(dlc_global *dlc)

This function picks one event by random (called re), according to the rates
of the individual events, see Fricke&Wendt. It returns the pointer to the led of
the event (*re).

2.2.6 dlc safechange

dlc_event *dlc_safechange(dlc_global *dlc, dlc_event *led, void *ued,
double r)

This function is used to move the leds of those events whose rates r have
changed as side–effect of the execution of the event selected by dlc rand (call
once for each event affected).

Arguments are

The Markov Classes Package — Instructions for Users 10

dlc global *dlc see above
dlc event *led pointer to the led of the event
void *ued pointer to the ued of the event
double r new reactivity of the event

The function returns the pointer to the event’s new led, required to update
the link ued → led, compare dlc enter; led → ued is maintained by the
function.

If the event’s new rate r is less than ε (global data.eps, see dlc init),
its rate is set to zero and it is not assigned a led: dlc safechange returns a
NULL pointer. As the event does no longer have a led, it cannot be selected
by dlc rand, i.e. it cannot “happen”. It might be, though, that its rate is
increased beyond ε later on as a side–effect of another event. In this case,
dlc safechange puts the event back to the logarithmic classes, provides a new
led, and re–creates the link led→ ued.

2.3 Sample Program

See dlc demo.c in the Markov Classes package.

Chapter 3

Discrete Classes

3.1 Data structures

As explained by Fricke & Wendt, a program using Disclass requires two sepa-
rate sets of data, one provided and maintained by the user program (ueds) and
one supplied by the Disclass routines, consisting of deds and some overhead.
The connection between those sets of data is made by pointers connecting the
two descriptors belonging to each possible event.

The Disclass data structure has three “layers”. On top is a single variable
of type dc global that contains — besides some other information — pointers
to the array of class descriptors. The latter form the second layer, an array
containing one element of type dc class per discrete class. Each of these class
descriptors points to the class’ event–array Fz[], containing one ded (of type
dc event) per event in the class plus “free” deds to be assigned to future
members of the class.

3.1.1 User-program’s data

typedef struct {
/* whatever you want */
dc_event *ded;

} user_event_descriptor;

As the name says, it is up to you to design this data type with just a few
things to keep in mind. You must include a pointer of type dc event* in the
structure, so the ued can point to its associated ded; return values of some
Disclass functions have to be assigned to this pointer (see below), but it must
not be manipulated otherwise. The class to which the event belongs should
not be stored in the ued, as it is already present in the ded and may be read
using ued->ded->ci. For easy access and flexibility, an array of ueds should be
allocated using calloc; after the ueds have been assigned deds using dc store,

11

The Markov Classes Package — Instructions for Users 12

the ueds must not be moved in memory, because this would destroy the
links ued↔ ded.

3.1.2 dc global

typedef struct DC_GLOBAL { dc_class *cbeg, *cend, *first;
int num_classes, nullclass;
size_t max_events;
double r;
long int number_of_reorgs;
void (*event_moved)(dc_event *);
char err_file[NAME_MAX];
void (*err_proc)();
void *err_ptr;

} dc_global;

This data structure contains the global data needed to access all of the
class and event data. It has to be initialized by dc init (see below) before the
simulation starts. The user program should allocate memory for this structure
and provide a pointer to it, since all Disclass functions expect a pointer to this
structure as their first argument. An appropriate definition would be

dc_global global_data,
*global_data_ptr = &global_data;

This data structure is essentially private, i.e. the user should keep her/his
hands off its contents, except for members r and number of reorgs, which
may be read by the user program.

r is the total rate which determines the random time step according to

∆t = −1
r

log(1− rnd)

where rnd is a uniformly distributed random number, rnd ∈ [0, 1). Using
Fricke/Knuth’s random generator, the appropriate C code is

simulation_time += exp_rand55() / global_data_ptr->r; .

number of reorgs counts the reorganizations of Disclass’ event data struc-
ture and thus helps to monitor performance.

3.1.3 dc class

typedef struct DC_CLASS{ dc_event *bot, *top;
double r, r_ind;
struct DC_CLASS *next;

} dc_class;

This data structure is private, i.e. the user should keep her/his hands off
its contents.

The Markov Classes Package — Instructions for Users 13

3.1.4 dc event

typedef struct DC_EVENT{ void *ued;
int ci;

} dc_event;

For each Markov event with a non–zero probability to occur (class index ci is
not nullclass), there is one ded of type dc event. The member ued provides
the link led → ued, which is maintained by the Disclass routines. ued is of
type void*, so that the actual ued structure in the user program can have any
name and contents. When using dc event.ued, it has to be typecast properly.
The user program must not manipulate the ded data.

3.2 Public functions

All Disclass functions take as their first argument a pointer to the Disclass
global data structure dc global *dc that contains all relevant information after
initialization by dc init. This argument will not be discussed again in the
descriptions of the individual functions.

3.2.1 dc init

void dc_init(dc_global *dc, size_t num_deds, int num_classes,
double *class_r_ind, int nullclass, long rand_seed,
void (*event_moved)(), char err_file[], void (*err_proc),
void *err_ptr);

This function must be called before any other Disclass function, as it allo-
cates memory and sets up links. The parameters passed to dc init are checked
to some degree and an error message is issued prior to program termination if
inappropriate parameters are given or not enough memory is available. Param-
eters are
dc global *dc pointer to Disclass global data,which has to

be defined by the user program (see above,
dc glob)

size t num deds number of deds to be allocated
int num classes number of discrete classes
double *class r ind pointer to array of class’ individual event rates
int nullclass pseudo-class for impossible events
long rand seed random seed to be used
void (*event moved)() pointer to function updating link ued→ led
char err file[] file to which error messages shall be written
void (*err proc)() pointer to function which is to be called after an

error message has been issued
void *err ptr pointer to user program’s data to be passed to

err proc

The Markov Classes Package — Instructions for Users 14

num deds should be the number of possible events, e.g. the number of cells in
a grid or the number of bindings in a polymer, times a “memory factor”
(usu. 2 − 5), depending on the memory available. The extra memory
is spread over all classes (uniformly at the start, proportional to current
size by later re-organizations), so that events that change classes due to
modified rate can simply be placed at the end of the array of deds of their
new class. If too few deds are allocated, “busy” classes will frequently
be filled to their limit, leading to time-consuming memory reorganizations
that move all deds. Thus, you should increase your “memory factor”
if your program requires more than one reorganization per 105 Markov
events (you can get the number of reorganizations from dc global).

num classes is the number of classes describing your system. The pseudo-class
for impossible events is not included in the number.

class r ind is the pointer to the first element of an array with exactly num classes
entries. Each entry gives the rate of an individual event in the corre-
sponding class. The contents of the array is copied by dc init, so the
array may be removed after dc init was executed.

nullclass the class index of the pseudo-class of impossible events. You can
choose this value as it fits your simulation needs. E.g., you might classify
the adatoms in a simulation by the number of next neighbors, yielding
0 . . . 3 as “real” class indices and nullclass = 4 as impossible pseudo-
class (compare Plesser & Wendt).

rand seed is used as seed for the random generator. When using the Fricke/Knuth
random generator, setting rand seed to 0L will be use the clock as seed.

event moved() is explained below. When calling dc init, include the function
name in the parameter list without parentheses.

err file[] must not be an empty string, but a valid file name. All error
messages will be sent to this file.

err proc() is a function that is called after the Disclass’ own error handler
has written its message to err file. In this way, control is returned
to the user program prior to program termination, so that data may be
saved. The function passed as err proc must be of type void and may
take zero or one argument. It may contain its own exit call, but that is
not required.

err ptr is a pointer to an arbitrary data structure and will be passed on to
err proc upon error. If you pass NULL, err proc will be called without
argument.

The Markov Classes Package — Instructions for Users 15

dc init may terminate issuing the following error message:
Initialization error: unable to allocate memory ...
Try reducing the memory requirement by asking for a smaller num deds, but
you should not reduce your “memory factor” below 2. In the worst case, stick
with smaller systems or buy more RAM.

3.2.2 event moved

The links ued→ led and led→ ued between user progam and Disclass data
must be maintained under all circumstances. This is easy for led→ ued, as the
ueds are not moved in memory. It is also quite simple to maintain ued→ led
when an event is entered or moved using dc store, as the pointer to the new
ded is returned. Problems occur once the array of deds has to be re-organized
and when a ded has to be moved to fill a gap in a ded-array Fz[]. In principle,
the link ued→ led could be maintained easily even in this case writing

moved_events_new_ded->ued->ded = moved_events_new_ded;

where moved events new ded is of type dc event*. Unfortunately, this requires
the ued to contain an element ded, interfering with the idea that Disclass
should be as autonomous and flexible as possible.

To circumvent this problem, the user program has to provide its own “link-
ing” function to update the ued→ led link. This function must

• be of type void,

• take as a single argument of type dc event* the pointer to the ded that
changed,

• “follow” the led→ ued link and update ued→ led.

Thus, it will usually look like

void my_ued2ded_updating_function(dc_event *new_ded)
{

((user_event_descriptor *) new_ded->ued)->ded = new_ded;
}

3.2.3 dc rand

dc_event *dc_rand(dc_global *dc)

This function picks one event by random (called re), according to the rates
of the individual events, see Plesser & Wendt. It returns the pointer to the ded
of the event (*re).

The Markov Classes Package — Instructions for Users 16

3.2.4 dc store

dc_event *dc_store(dc_global *dc, void *ued, int new_ci)

This function is used enter events into the Disclass data structures at the
beginning of the simulation. Arguments are

dc global *dc see above
void *ued pointer to event’s ued
int new ci index of event’s class

The event is deleted from its current class and inserted into the new one;
the link led → ued is created by the function. The opposite link ued → led
needs to be set up by the user program using the return value of dc store, e.g.

ued->ded = dc_store(global_data, ued, ci)

Note that impossible events should not be entered into the data structures.
dc store should be called by the user program upon initialization only.
Any subsequent updating should be done through dc move.

3.2.5 dc move

dc_event *dc_move(dc_global *dc, dc_event *ded, void *ued, int new_ci)

This function is used to move the deds of those events whose rates (may)
have changed upon execution of an event. Arguments are

dc global *dc see above
dc event *ded pointer to event’s ded
void *ued pointer to event’s ued
int new ci index of event’s new class; pass nullclass if

event has become impossible
The event is deleted from its current class and inserted into the new one; the

link led → ued is maintained by the function. The opposite link ued → led
needs to be maintained by the user program using the return value of dc move,
e.g.

ued->ded = dc_move(global_data, ued->ded, ued, new_ci)

If new ci == nullclass, the event is just deleted from its old class and assigned
to the pseudo-class, i.e. it is not assigned a new ded. Thus, the function returns
NULL in this case.

3.2.6 dc clear

void dc_clear(dc_global *dc)

This function returns all dynamic memory allocated by dc init to the system.
It should be called before leaving the simulation program. Its only argument is
a pointer to the Disclass global data structure.

The Markov Classes Package — Instructions for Users 17

3.3 Using a different random generator

To use a different random generator than the one by Fricke/Knuth, take a look
at the following lines in dc.1.1.h (approx. line 70)

/* modify the following four lines to use your own random generator */
#include "random.h" /* random generator by Fricke/Knuth */
#define seedrand(seed) (init_rand55(seed)) /* seeding command */
#define longrand(max) (lrand55(max)) /* long rnd, 0 <= ... < max */
#define doublerand() (drand55()) /* double rnd, 0<= ... < 1 */

The #include command should be replaced with the appropriate include for
your own random generator. The macros must be defined in such a way that

seedrand(seed) seeds the random generator, where seed is a long. For con-
sistency, seedrand(0L) should seed using the clock.

longrand(max) returns a uniformly distributed random number of type long
in the interval [0, max).

doublerand() returns a uniformly distributed random number of type double
in the interval [0, 1).

Bibliography

Fricke, T. and D. Wendt (1995). The markoff automaton—a new algorithm for
simulating the time evolution of large stochastic dynamic systems. Int J Mod
Phys C 6, 277–302.

Plesser, H. E. and D. Wendt (1996). A fast algorithm for high-dimensional
markov processes with finite sets of transition rates. In Proceedings of the 1996
International Symposium on Nonlinear Theory and its Applications (NOLTA
’96), Kochi, Japan, pp. 249–252.

18

	Generalities
	Prerequisites
	Introduction
	Some words of caution

	Logarithmic Classes
	Data structures
	User-program's data
	dlc_global
	dlc_class
	dlc_event

	Public functions
	dlc_init
	event_moved
	dlc_clear
	dlc_enter
	dlc_rand
	dlc_safechange

	Sample Program

	Discrete Classes
	Data structures
	User-program's data
	dc_global
	dc_class
	dc_event

	Public functions
	dc_init
	event_moved
	dc_rand
	dc_store
	dc_move
	dc_clear

	Using a different random generator

