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‘We describe a new algorithm for simulating complex Markoff-processes. We have used
a reaction—cell method in order to simulate arbitrary reactions. It can be used for any
kind of RDS on arbitrary topologies, including fractal dimensions or configurations not
being related to any spatial geometry. The events within a single cell are managed by
an event handler which has been implemented independently of the system studied. The
method is exact on the Markoff level including the correct treatment of finite numbers
of molecules.

To demonstrate its properties, we apply it on a very simple reaction—diffusion—systems
(RDS). The chemical equations A+A—@ and A+B—0 in 1 to 4 dimensions serve as
models for systems whose dynamics on an intermediate time scale are governed by fluc-
tuations. We compare our results to the analytic approach by the scaling ansatz. The
simulations confirm the exponents of the A+ B system within statistical errors, including
the logarithmic corrections in the dimension d=2.

The method is capable to simulate the crossover from the reaction to diffusion limited
regime, which is defined be a crossover time depending on the system size.

1. Introduction

Thus the dynamics of chemical reactions in homogeneous systems is well unders-
tood, they are easy to describe by a van’t Hoff ansatz 1. However, in inhomogeneous
systems the transport mechanism has to be taken into account. We want to consider
reaction—diffusion—systems (RDS) for which the slowest mechanism determines the
dynamics of a RDS. RDS are known to be capable of a very complex behaviour like
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formation of spatial and temporal patterns. They show this great variety of effects,
even if their discrete nature can be neglected and they are well described by the
mean concentrations n, (7). Population dynamics, which is often described by a for-
mulation equivalent to chemical reactions, deals with much smaller concentrations,
so the role of fluctuations is much more important than for chemical reactions.

1.1. The structure of this paper

At first, to introduce the notation, we briefly review the general method for
simulating master—equations, with respect to chemical reactions. Then we will
present the reaction—cell model to describe extensive reaction volumes. After that,
we give a detailed description of the implementation as a the ” Markoff-automaton”.
Our algorithm makes use of non—numerical data structures borrowed from computer
science, because we need programming methods not commonly used in standard
numerics. Therefore, we describe our methods in details. They may be regarded as
”semi-numerical” algorithms in the sense of 2. Finally, we will present the results we
have gained applying our algorithm to the simplest RDS A+ A — @ and A+ B — 0
in 1 to 4 dimensions.

1.2. Reaction—Diffusion—Systems

We want to denote different types of molecules =, by a Greek index «, while
the reactions are distinguished by the Latin letter <. The stoichiometric equations
describe the chemical reaction of the i—th type unambiguously by the initial (or
forward) f! and final (or backward) b, coefficients and the related reaction-rate \*

o )\i o
Z ;:a—>2bg:a. (1)
[e]3 [e3

The common formulation of the mean—field equations for position—-dependent

mesoscopic concentrations n(z,t) leads to nonlinear coupled partial differential
equations
%na = DoAng + Y N[5 — fa)n} . (2)
g B
In some realisations of certain systems they may also describe the fluctuations 34
give only quantitative changes 5, nevertheless, it may become necessary to respect
the influence of fluctuations, especially in biological systems, where the number of
individual molecules is very small 7.

However, in contrast to the simple derivations of the partial differential equations
for the mean values, the formulation of the equations for the higher moments are
much more complicated, even for simple systems.

Note the different scaling of mean concentrations and fluctuations. While concent-
rations are proportional to the number of particles N, in a volume 2, i.e N, = Qn,,
fluctuations scale with a different power law according to § N, =2 /N,. If we int-

roduce the fluctuations of n, as additional quantities én., we have to take into

or
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account, that they usually scale as én, = /N,. However, the assumption of a
01'/2 scaling is invalid, if luctuations may increase, as in our case. Other important
examples of scaling departing from this law are physical systems showing critical
behaviour. A rigourous derivation of the fluctuation scaling by terms of an 1/Q
expansion is given in 1.

Therefore, the analytical treatment turns out to become very difficult, if diffu-
sion and the discrete nature of the molecules together must be taken into account.
Not only the cost of computation grows proportional to the volume, it has to be
remarked that it also increases exponentially to the statistical moments taken into
consideration.

In the reaction—limited case, diffusion is sufficiently fast to keep the concent-
rations homogeneous. Thus the reactions follow a global van’t Hoff dynamics, for
which diffusion may be neglected. For the diffusion—controlled reactions the time
to pass structures like domains or empty spaces determines the time scale of the
RDS. To introduce spatial resolution we subdivide the volume Q into L¢ small cells
of size w = Q/L%.

Therefore, for small numbers of molecules within an w volume, the discrete
nature of the molecules must be taken into consideration. The raw estimation for
systems of N molecules leads to an estimation for the fluctuations of O(\/N ). Thus
we need O(N) = 10,000 molecules to guarantee a relative error of percentage order
if fluctuations are neglected.

Former simulations 8:9:10

using cellular automata or lattice gas methods to study
the dynamics of RDS are restricted to small volumes and small numbers of mole-
cules. Computer simulations of complex RDS focus on the mean—field—behaviour
taking no notice of the fluctuations, whereas on the other hand stochastical simu-
lations of extensive systems close to equilibrium are not well suited to dynamics.
In contrast, using our algorithm we may handle some 107 particles and are, fur-
thermore, able to study the crossover from the diffusion—controlled to the reaction—
controlled limit. Following an analysis of the relevant time scales, the diffusion
can be simulated on a coarse lattice of cells without affecting the exactness of the
results. Our goal is to close the gap between solving the mean—field-equations
and simulation techniques using cellular automata. Both techniques are included,
but we want to emphasize, that standard algorithms may be more efficient to co-
ver these limits. Because our method is related to cellular automata, we call it a
?Markoff-automaton” claiming its exactness on the level of the Markoff—processes
derived.

The algorithm has been written for systems with a clear separation of the short
time—scale of reaction events and the long time—scale of the decay of the popula-
tion. It should be used with care, when the scales are mixed, f.e. by local ordering
phenomena.

1.3. The physical systems

We consider two different RDS consisting of one of the two simplest chemical
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reactions:

A+A — 0, or (3)
A+B — 0. (4)

1.4. The reaction—limited case
In this case, the diffusion is as fast, that the extinction is controlled by the

reaction. Thus both systems may be described by a global van’t Hoff ansatz, which
leads to the differential equations for the concentrations n,,

Gnatt) = —kn}(0), (5)
%TLA,B(t) = —k’nA(t)TLB(t). (6)

The straightforward solution of (5) reads

__na(0)
nalt) = okt T

To solve (6), we take advantage of the fact, that the difference An(t) = na(t) —
np(t) = An(0) is conserved. This way we obtain the mean—field result
n.4(0)An exp(—Ankt)
t) = 8
na(t) 15(0) — 1.4(0) exp(—Ankt)’ ®)
np(t) = na(0)+ An. 9)

For the case of equal initial concentrations, i.e An = 0, equation (8) reduces to (7).
Note that the initial condition n 4(0) = np(0) is responsible for the algebraic decay.

1.4.1. The diffusion limited case for A+ A — 0

In this case the extinction is controlled by the speed of diffusion, which has been
analysed in detail by the scaling ansatz of Kang and Redner %10, However, at this
point, we can only give a brief description of their main arguments, because we have
outlined their scaling in the appendixes.

While we want to use this simple model to test our algorithm, we also want to
examine the accuracy of the scaling ansatz, which predicts an algebraic annihilation
for the diffusion controlled A+ A reaction. The time t; is the time to pass the mean
distance between two A molecules at t = 0,

t=42 d <2, t > te,
na(t) o« { = d>2 (10)

This RDS shows a critical dimension d. = 2, for d > d. the decay is predicted to
be determined by mean field behaviour.
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1.4.2. The diffusion limited case for A+ B — 0

In the A + B reaction we obtain the time scale t; determined by the time to
pass a domain as
1 —2/d
te = - |Vua(0) — vua(0)] - (1)
An algebraic annihilation nap t=% with d. = 4 appears on a time scale t < ;.
Thus, if n4(0) < np(0) we obtain in the limit An = n4(0) —np(0) — 0,

=4 d< 4, t<te,
nA,B(t) OC{ t_l, 4> 4. (12)

A more detailed explanation of the scaling arguments is left to the appendixes.
Both of these simple reactions are the most important examples for the influence
of fluctuations in RDS. Therefore, to improve our understanding of RDS beyond
mean—field—behaviour, we present our simulation method as an approach correctly
treating dynamics and statistics in a natural way.

2. Simulating master—equations

We want to treat a chemical reaction as a Markoff-process, which is described
by the time evolution of the probability p; to be in state X at time ¢ following a
stationary master—equation

dpz
=2 We_xrz - Wg_gopg} (13)
2 —_————— —_———

inflow into X outflow from X

in our case the discrete vector X denoting the number of molecules 2.

The minimal-process—method simulates the master—equation as a random—walk
in the space of all possible configurations. Starting the random—walk in state X ,
we only need to determine the time leaving X , and the successor state X' , which is
equivalent to draw the lifetime 74 and the transition X — X' as random numbers.

For both steps the knowledge of the flux out of X is completely sufficient. The
lifetime 74 is exponentially distributed, while the selection of the transition requires
the drawing of a random-number X! proportional to the transition rate Wz _ 4,.
This property is due to discrete Markoff-processes, and we want to emphasize that
it is ezact and not affected by any further assumptions.

To explain the name ”minimal-process—method” it has to be remarked, that
the master—equation (13) may be interpreted in different ways. We may look upon
the outflow term as the death—process and upon the flux into a state as the birth—
process of the state X 1415 The minimal-process being the process with the least
number of events is the random—walk—process in the discrete configuration space of
all possible X. The minimal process distinguishes on the rule, that a death process
in X always coincides to a simultaneous birth process in X’. With the sum

We=> Wi %, (14)
bl
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the way to generate this random-walk and the sequence of states X (t) is given by
the following simple algorithm:
Minimal-process—method

1. Generate an exponentially distributed random number 7 with
Pr(1) =Wy -exp(-Wy - 7), let t — t 4+,

2. select X' according to the probability
Pr(X - X') =Wx_3/Wg,

3. go back to step 1.

The characteristics of discrete processes were already known to Markoff, the minimal—
process—method at least since the early sixties 1415, However, no one has made use
of it for computer simulations until the mid seventies when Gillespie applied it to

chemical reaction-systems 1213,

2.1. Chemical reactions in a homogeneous volume

For the present, we want to discuss arbitrary chemical reactions in a small
volume w, for which the diffusion is so fast that any spatial inhomogeneity may
be neglected. After that, we will introduce diffusion as a reaction-like process of
molecules leaving the volume w. In this way, we want to describe the dynamics by
which diffusion relates distances of an extensive length scale to a time scale.

According to (1) the number X, of molecules =, changes from X, to X, +
b:, — fi each time the reaction of the i—th type occurs. Le. fi molecules =, are
consumed and b}, molecules =, are produced. Forward and backward reactions shall
be distinguished by their enumerations. If the reactions j and 7 are reciprocals of
each other, the role of the coefficients is exchanged, i. e. fi = bJ,, and fJ = b?,.

Since the number of molecules is an extensive quantity, the number of chemical
reactions per unit time must be extensive, too. The rate of events, the reactivity
A? of a chemical reaction is defined as

iqe the reaction ¢ occurs during
A'dt = Pr {the time interval [¢,t + dt] } (15)
According to van't Hoff 1, it is given by
: : X!
A= [ —2 16
N = 1o

where A® is an intensive constant which does not depend on X,. Note that the
reactivities A depend on the state, i.e. A* = A;?, A = Ay, the index X is usually
suppressed. The fraction

X! Xa(Xa_l)"'(Xa_fé'i'l)

: _ — - 17
(X fi) hs o (7
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takes into consideration that each individual molecule can only be consumed once.
This is important, if the numbers X, are small. For large X, this fraction turns
. e o . o1
into the more familiar form (%)f“, ignoring any power up to (%)f“ .

The van’t Hoff approach suggests chemical reactions being Markoff—processes
12,13 " which may be justified due to a stosszahlansatz for homogeneous concentra-

tions. The configuration is the vector consisting of the number of molecules

X =(X1,Xo,.. ., Xa,- 1) (18)
For abbreviation we group the initial and final coefficients for the reaction of the
i—th type as vectors f* = (ff, f&, ..., fi,...), b = (b,b%,...,b%,...). Bach type
of reaction is realized by an integer vector operation, the vector 6° = b*— f* denoting
the changes caused by the i—th reaction:

— — —-

X — X 46" (19)

In our case the vector X is simply a one— or two-dimensional vector

F (X4) reaction A+ A — 0, (20)
“ | (Xa,Xp) reaction A+ B — 0.
The reaction-rates are computed according (16) as
Xa(X4q—-1
Aga = )\AAW%a (21)
XaX
AAB = )\ABLU w2B. (22)

The homogeneity of the concentrations within w is necessary for the van’t Hoff
ansatz. We will have to subdivide the volume into sufficiently small cells to justify
a local form of (16), introducing diffusion as hopping from one cell to an adjacent
one.

2.2. Gtllespie’s algorithm

With these assumptions Gillespie describes the sequence of states of a chemical
system by the random-walk of the vector X=X (t). His algorithm is a version of
the minimal-process—method adapted to the dynamics of chemical reactions, which
is based on the well known properties of discrete stochastic processes'415-12:13 We
summarise his main results according to our requirements. The total reactivity is
the rate

A= > A%, (23)
all reactions ¢
which determines the probability of a chemical reaction during the infinitesimal

time interval [t,t + dt] according to
Adt — Pr {some chemical reaction changes the} ‘

state X during [t, ¢ + dt] (24)
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A is the inverse of the average lifetime of X , therefore the random time 74 until the
next event occuring has the probability density

Pr{7s,time to next reaction } = Aexp(—Ary). (25)

Because we have assumed that chemical reactions are Markoff—processes, this equa-
tion yields independently of the time when the last change occurred, which is a
general statement for any discrete Markoff—process. According to Gillespie, the
probability of the reaction of kind ¢ is proportional to its contribution to A, thus
L A

Pr{Reaction i} = n (26)
is the probability, that the next change of X in the chemical system is determined
by a reaction of type ¢ defined by (19). The transition rate Wy _ ¢, is given by the
probability of all chemical reactions leading from X to X!

W)?—»}_(" = Z A®, (27)
all reactions _} Wi_‘g_h
X' =X-f+0b

Note that different chemical reactions may change X by the same 5 = f’ — b
because only the backward and forward stoichiometric coefficients f’ and b* together
determine the reaction unambiguously.

Gillespie’s algorithm implicitly uses equation (27) to decompose the relation of
reaction and transition probabilities. For arbitrary chemical reactions it computes
the random time-step 7o until the next reaction by drawing an uniformly distributed
random number rnd € [0,1). The reaction type i usually is selected by a simple
loop, known as linear selection algorithm using the sum s for the integration. The
variable ¢ denotes the time, proceeding in exponential time steps. The order of
reactions denoted by ¢ is arbitrary. After the reaction has been carried out, the
reaction reactivities A* and the total rate A = Wy are computed again.

Gillespie’s algorithm
1. 7p « —¢log(1 — rnd), t—t+1p
2. r«— rnd, s+« 0, 4 «first reaction,

3. while s <7rA,
(a) i+ 1, i’ <next reaction

(b) add up s < s+ A’

4. do reaction type i by X «— X + &, compute A%, and A — > AL

5. go back to step 1.

Note the adaptation to the time scale A~1, which is responsible for the high flexibi-
lity of Gillespie’s algorithm. Thus it is a fast and easy to use Monte—Carlo method
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for the dynamics of arbitrary reaction—systems and has the main advantage over
the mean—field description, that it takes into account internal fluctuations caused by
the finite numbers of molecules. Because the random—walk imitates the sequence of
states of the simulated Markoff—process, any correlations and higher moments may
be measured as in a real experiment.

3. The reaction—cell method

The molecules are treated as point—like particles with a finite interaction proba-
bility, implicicelty assuming, that their Brownian motion is independent. Our simu-
lation introduces a reaction—cell method. In general, for small diffusion—constants,
the homogeneity condition of the van’t Hoff ansatz cannot be fulfilled for the total
d—dimensional volume Q. Thus Q2 is subdivided into small cells (cubes or squares
% = h?%. We have to impose the condition, that the size of w
may be justified by a local van’t Hoff ansatz. This prerequisite depends on the time—
scale Tg between two subsequent chemical reactions compared to the time scale Tp
of a molecule leaving w by diffusion. The diffusion—time—scale has to be much faster
than the reaction time-scale, i. e. Tp < Tg with 7p = h?/D and 7p = 1/A.

Our algorithm covers the field between the deterministic description of RDS,
which does not describe the fluctuations correctly, and the cellular automaton ap-
proach, which is not well conditioned to describe large numbers of particles. The
assumptions have to be justified in any case, and have to be modified carefully,
f.e. if the spatial extension of the moving objects has to be taken into account.
This is important for the A + A — 0 reaction in lower dimensions 1:'¢, where the
seed reaction constant may become a irrelevant quantity. In this case first prin-
ciple Monte—Carlo simulations have to be performed and our algorithm has to be
checked.

etc.) of volume w =

3.1. Reaction—Diffusion—Systems

We distinguish different cells by an integer vector index 7. Therefore, the pos-
sible reactions now depends on the local situation which is described by the number
X7 of molecules =, in cell 7. The total volume (2 is represented by the direct sum

X:@Xﬁ:@®Xaﬁa (28)

consisting of sub-vectors Xﬁ ={..., Xas,...} of the numbers of molecules in each
cell. _
For the A+ A — () system X has the form

X ={(Xa,.1y) » (Xaq,.2) s Xa,.y)}s (29)
respectively for the A + B — () reaction
X ={(Xag, .1 Xp0,.1)) » (Xaq, .2y » XB(1,..2) » (30)

oo (Xayn) XB(2,00))
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In this section we want to introduce diffusion as a random-walk on the lattice of
reaction—cells. The diffusion in an arbitrary, not necessarily euclidian, topology
may be regarded as a reaction—like step of a molecule =, from 7 to one of its next

neighbours 7,
/\aﬁ

Eaﬁ - Zanm - (31)

3
1

For a diffusion—step of a molecule =, the rate

1
Aaiim = Daﬁfnﬁ, (32)
with D,z denoting the local diffusion—constant, describes the probability
o a single molecule =, jumps from 7 to m
Aagimidt = Pr {during the time intervals [¢, ¢ + dt] (33)

On a lattice built of volumes w = h?, we obtain in the limit ¢ — oo the correct
Brownian motion behaviour by the central-limit—theorem. The symbol (7)) denotes
the set of all 2d next neighbour cells of 7. Due to the symmetry of the rate to do a
single step into any direction i.e. the rate of leaving 7 by diffusion, is D,z /h?, with

Aar = Z Aarm = 2d X orrs - (34)

me(n)

In the isotropic and homogeneous case we omit the spatial indices A\, = A,z and
the rate for stepping in a certain dimension gets A, /2d, while the total rate for
leaving a cell is A,.

If we have X, 5 molecules Z, in cell 77, the rate for the next diffusion step of
any =, to 7 is

Aim = A Xan- (35)

This rate is the equivalent formulation to (16), treating a diffusion—step like a first
order chemical reaction. If a diffusion—step occurs, another cell m gets involved,
because one =, moves from 7 to 7. Thus a diffusion—step is carried out by

1. Xong — Xar — 1, 2. Xom — Xom + 1. (36)

Notice that in our case Ayzm depends only on the contents of 77, from which a mo-
lecule hops into a neighbour 7 € (i), although the assigned diffusion—step changes
the contents of the other cell 1, too. Thus a diffusion—step changes the state of two
cells, however, its rate depends only on the contents of the first cell 77 triggering the
event.

For the chemical reaction of type ¢ we simply have to change the contents of 7
by X7 — Xq+6 Therefore, the probability Q7 of an event triggered by cell 7 is
the sum of reaction-rates A% and diffusion-rates A,z

Qa=2 Ai+> > Awwm (37)

o me(n)
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Because all reaction— and diffusion—steps are assigned to the cell 77, we may identify
an arbitrary step entirely by an integer ¢ and the cell 7. We may ignore the additio-
nal index m for the selection mechanism. A reaction may be defined by an addition
of its associated difference 5’5, ie. X — X +5%, involving one or two cells. In section
6.1.1 below we suggest obvious generalisations of rates depending on the contents
of the neighbourhood of 7. This way it is easy to introduce dynamics depending on
gradients, like the movement of kinks and steps on surfaces.

3.2. Twimes scales of reaction— and diffusion—processes

If we want to fulfill the assumptions of a local van’t Hoff ansatz we have to
satisfy the condition, that diffusion is much faster than any chemical reaction. More
precisely spoken, this means, that the local reactions A% and diffusion— A,z rates
define different time scales, which have to be separated. Therefore we choose the
size of our cells sufficiently small, for the condition

AL & Agim, for any i, o (38)

to be satisfied. This can always be achieved, because reaction probabilities are
extensive quantities Aiﬁ o w = h¢, while diffusion-rates increase with Ah=2. Thus
Aaitm X w™2/% and Agmm o< w2/, the lattice constant h always can be reduced
to make the ratio A
A o w?d = p? (39)

Ao

arbitrarily small. For any practical purpose it is not possible to give an a priori es-
timation, so we recommend to choose w as large as possible rejecting the simulation
runs if 10A% > AZ ..

4. Selecting a single cell by the method of logarithmic classes

Although we have argued that there is no principal difference between the Gil-
lespie algorithm in a homogeneous volume and the method on a lattice of reaction
cells, a significant complication arises as the number of possible changes in each
Markoff—step is an extensive quantity. If we make a straightforward generalisation
of Gillespie’s algorithm using a linear selection strategy we run into the problem
of selecting a single event from an extensive quantity of transitions. The total

reactivity '
Q=ZQﬁ=ZZQ% (40)

again determines the mean time step. According to condition (38) we choose the
sequence of transitions considering at first the more probable diffusion—steps, after-
wards the possibility of chemical reactions.
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Gillespie’s algorithm for reaction—cells with linear selection
1. 7q + —log(1 — rmd), t—t+ 70,

2. 7+ rd, s+ 0,

3. while s < rQ, for all cells 7 ,
(a) next 7,

(b) while s < rQ,

i. next 1,

ii. sum s < s+Q%,

4. do transition X « X + &%,

5. for all cells 7 and reactions ¢ involved,
recompute all Q% = Q7 = Q,

6. go back to step 1.

This method suffers from the severe disadvantage that the sum S computed at
step (3) adds up an extensive number of reaction probabilities. Drawing a random
cell due to its contribution )7 to @, the loop consumes computing time proportional
to the number of cells. This procedure is completely unsuitable for a single step of a
computer algorithm, see figure 1(a). If we do not have any additional information,
we have on the average to walk the half length of the main loop. Even for a small
lattice of 10* = 100 x 100 cells this means an increase for the computing time
compared to the algorithm without spatial resolution by an average factor of 5,000.
It seems to be impossible to circumvent this problem by rearranging the cells or
some kind of pre-sorting, because the selected reaction changes the cell-reactivity
every time. A random selection according A. J. Walker’s 2 algorithm would be
efficient only if the reaction—rates did not depend on time. The extensive quantity
of cells to be considered is a principle obstacle.

These reflections show that linear selection is totally inefficient. Thus we have
tried another algorithm based on the von Neumann rejection, which selects at first
the reaction—cell and in a second step the reaction or diffusion in this cell.

4.1. Von Neumann rejection

The von Neumann rejection requires an upper bound for the probability to select
a cell. Therefore we have to make the assumption, that

Q:<Q for each cell 7. (41)

We replace step (3) by
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linlear Slelection

100 20 30 40 30 _,60 70 80 90 100

cells 7

von Neumann rejection
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. acgepted

10 20 30 40 5 .60 70 8 9 100

—

cells 7

method of logarithmic classes
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C}, = constant 9

1

1 == 1 1 1 1 1

(a) 10
8 L
6 L
Qs
4 L
2 L
0
0
(b) 10
8
6
Qn
4
2
0
0
(c) 10
8 L
6 L
Qs
4 L
2 L
0
0

10 20 30 40 5 60 70 80 90 106Oo

cells 77, rearranged

13

Figure 1: Selection algorithms: (a) Linear s., the loop integrates 7 up to 7@,
thus the cost is extensive, (b) Von Neumann rejection without improvement, the
cost is the ratio of the area of the rectangle marked off by the upper limit Q to
the area below Q. A single peak may severely affect its efficiency, (c) s. by the
method of logarithmic classes, the upper and lower limits for each class are denoted
by dotted lines. The acceptance a > 0.5 is the ratio of the reordered Q)5 to its upper

estimation 2foor (1d(@#)) + 1 we find the cost being approximately constant.
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(3) von Neumann rejection

(a) select a cell 7@ with uniform probability,
(b) choose a uniformly distributed random number 7 «— rnd,

(c) if Qz > rQ then select a reaction according to X,z
else reject this choice and go back to step (a).

On the first glance this algorithm seems to solve all problems. The method does
not depend on the number of cells, thus the problem of the dependency on the
extensive number of cells does not arise. However, a more precise look reveals that
the efficiency of the von Neumann rejection strongly depends on the homogeneity
of the RDS. This is demonstrated in figure 1(b). The acceptance ratio a is the
quotient of the area below @5 and the rectangle delimited by Q

o= 25 , (42)
Q51
and 1/a is proportional to the number of runs through the loop needed to select a

cell. Therefore the cost C,yr of the algorithm is proportional to the inverse of the
acceptance ratio,

1 Q3,1
Conn > on (43)
For very inhomogeneous systems, i.e. for systems dominated by a single peak,
this method may slow down by an arbitrary factor, which has been studied for the
simulation of a biological system 6. This disaster can be avoided, if we split up the
cells into classes according to their dual order of magnitude. The acceptance ratio
is improved to 75%.

4.2, Method of logarithmic classes

If we want to handle all orders of magnitude of the cell reactivities ); we have
to implement a logarithmic classification scheme. We define the logarithmic class
L, as the set of all cells 77 with a reactivity @5 in the same order of dual magnitude.
The symbol ld(z) = log,(z) denotes the logarithm with base 2, and the function
floor(x) denotes the largest integer which is not greater than z

L. = {i] floor(1d(Qx)) = =} (44)

The reactivity ¢, of a certain class is given by the sum of the reactivities of its
elements

fEL,

There is no principal restriction of the range of z

z = floor(1d(Qsr)) € {—,...,—2,-1,0,1,2,3,...}. (46)
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The class L_, contains all cells without any possibility of a reaction— or diffusion—
step, above all the empty cells. Because L_, cannot be selected, i.e £_,, = 0, there
is no need to represent it in computer memory. For any practical application, z is
restricted to a finite range zmin < 2 < Zmax- The intersection of two different classes
isempty L, N L, =0, z # 2', thus the total reactivity is expressed by the sum

Zmax

Q= Qa= > L= > L. (47)

Z=—00 Z=Zmin

The inequality
27 < Qn < 27T, nEL, (48)

guarantees, that the reaction-rates are relatively homogeneous within a certain

class. The rates of two members of any class do not differ by more than a factor of

2 Q
max 7
mer, °"

ip @

<2. (49)

This is an ideal starting point for the von Neumann rejection. We therefore decided
to implement an event handler, which is able to select a reaction—cell according to
its reaction—rate by a von Neumann rejection step within the class. The number of
classes is small, i.e. of O(10), thus the choice of a class is based on a linear selection
algorithm.

4.2.1. Selecting a reaction

The problem has been split into three qualitatively different steps:
1. select a class L, with probability £, /Q,

2. select a cell @ € L, with probability Qz/¢.,

3. select a reaction—step ¢ within cell 7@ with probability Q}L /Qa.

We stress again, that the index ¢ represents both reaction and diffusion transitions.
The last two steps are selected according their conditional probabilities

Pr{select class z} = %Z, (50)
Pr{select cell 7@ | class z has been selected} = Ej’ (51)
Pr{select reaction i | cell @ has been selected} = g%, (52)
therefore the probability of selecting a reaction in a cell
Pr{select reaction 7 in cell 7} = %ij Q—i = %% (53)
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has been maintained correctly.

The algorithm choosing a class is a linear selection. However, it is not necessary
to order the sequence of classes (z;, ..., z;) in a naive way with z; < z;41 or z; > 241
for all 4. Moreover, it has a favourable effect, if the classes are sorted with respect
to their reactivity, i.e £,; > £,,,,. To speed up the selection, the classes of the
highest probabilities to be selected are successively moved to the head of the loop
by a bubble-sort, see step (2¢) below. This is the most efficient algorithm to select
a reaction in a class according to its rate ¢,,, because the classes with the smallest
probabilities to be drawn least are moved to the tail.
1. Selection of a logarithmic class L,

1. random number r « rnd, sum s+« 0, index:=0
2. while s <r@Q

(a) increase i «— i+ 1,

(b) add up s «— s+ £,,,

(¢) ifi>1and ¢, > ¢, , then
exchange the order of the classes z; and z;_;.

3. return z = z;, i.e draw L.

After z has been selected, it is easy to propose a cell 77 by drawing a uniform
random number u € {0,...,v, —1}. We have implemented each class L, as an array
F,[0,...,v, — 1] of v, =| L, | elements, each describing the state of a single cell.
The following subroutine does the von Neumann rejection of a cell in the previous

selected class z.
2. Selecting a cell 72 in class L, by von Neumann rejection

1. propose u < floor(v, rnd), 7@ «— F,[u],
2. draw a uniform random number r < rnd,

3. if Q7 > r27t! then return i,
else go back to step 1.

Because of the inequality (48) we know lower and upper limits of the reactivity,
2?2 < Q5 < 2711, Therefore, it is guaranteed, that the probability for a rejection is
less than 0.5. If we assume that the rates in each class are distributed uniformly,
we get an acceptance ratio a = 0.75. In the cell 7 the reaction is chosen by a linear
selection method, because the number of possibilities usually is small O(1)...O(10).
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3. Selecting a transition ¢z within cell 7,
1. random number r « rnd, sum s « 0,
2. for all diffusion—transitions j:

(a) sum s «— s+QZﬁL,

(b) if s > 7Q5 then return step j,
else next j,

3. for all chemical reactions i,
(a) sum s «— s+ Q%,

(b) if s > rQ5 then return step 1,
else next ¢

The changes in all cells and classes involved have to be registered by bookkeeping
steps which require the computation of the reaction-rates Qiﬁ, the local reactivity
of a cell @, its class reactivity £z and the global reactivity (). For a diffusion—step
concerning a further cell 71 the bookkeeping has to be done for these cells, too.

4. Bookkeeping for all cells i, m involved
For all cells 7, as far as their rates are concerned do

1. compute the local rates Q%,

2. compute the new cell reactivity Q% and its new class
2" — floor(1d(Q%)),

3. if the class has not changed, i.e. z = 2/,
then update £, — £, — Q7 + Q%,
else delete cell @ in class z and insert it into 2/,
including an update £, «+ £, — Q5 and £, — {0 + Q.

4. update the total reactivity @ «— Q — Q5 + Q) and the cell reactivity
Qi — Q%

At this position the algorithm has been presented except for the data structure.
Inserting and deleting of cells is somewhat delicate and will be the subject of the
implementation section.

4.2.2. Implementation of the event handler

Our approach makes use of a lot of sophisticated, non—standard and non—numeric
algorithmic structures. Because we do not see any way to obtain these results by
usual programming methods, we want to introduce our data structures in details.
The procedures dealing with these structures have been presented in the previous
section.

Our program has been developed in C to achieve the highest portability and
speed. We have written the code in an object oriented style nevertheless using only
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the ANSI C 2.0 standard. We implemented the following duties

1. an initialisation procedure, which serves as a constructor, to define the num-
bers of events and classes to be managed,

2. a procedure, which can be seen as a destructor, to clean up the data structures,

3. a random generator drawing a cell according its reactivity due to its contri-
bution following the algorithm of the section above,

4. a subroutine to insert an event,

5. another subroutine for the deletion of an event.

4.2.3. Basic data structures

The most flexible data structures are pointers, thus an event is described by
a pointer to the cell being represented. Because we do not want to make any
assumption about the cell itself, we have implemented an event as pointer to the
empty type, i.e. the type event is equivalent to the type (void *). This choice has
the advantage that it may easily be converted to a more problem—adapted structure.
The event selection has been kept completely separated to encapsulate the problem—
independent structure of the event handler from the problem-related structure of
the cells and the topology. The cell—-structure contains all informations about the

cell{ event{
integer A; double float Q;
[integer B;] ointer to void c;
g P
further molecules }

pointer to event e;
} problem-independent,

problem-related data event handling data

Figure 2: The cell-event data structure

contents of the cell, in our case the integer numbers of A or A and B molecules.
Unfortunately we found that the number of events contained in each class changes
rapidly in unpredictable way. It is not possible to specify an a priori strategy to
determine the size of a certain class in advance. We have therefore been forced to
write an reorganisation procedure balancing the memory by dividing it into parts
proportional to the size of each class.
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The link event — cell is used for the selection mechanism, i.e for events cau-
sed by a reaction of 7. This may be a chemical reaction within 7 or a diffusion—step
originating in 7. The link from cell — event is necessary to respond to changes
in cell 7 triggered by other cells 7 concerning 7, i.e. some molecule diffusing into
.

Since the event—structure may be moved by memory reorganisations, the cell
— event link has to be updated every time an event is moved. This is achieved
by addressing via the link toward the other direction event.cell.e «+ event.
In general, the structure moving has to inform its related partner about its new
address.

The cells and the events are stored in two separate arrays. The cells are ar-
ranged in a one dimensional array of size L? using helical boundary conditions.
The topological neighbourhood of a single cell belonging to a certain index array
n= Y970 Lons with 0 <n < L% — 1 can be addressed by

n + L° modulo L¢, 0<é6<d-1. (54)

This way the topology has been implemented independent of the integer dimension
d. For chemical reactions in fractal dimensions a more sophisticated structure is
required. In this case the neighbourhood of a cell has a much more complicated
topology.

The memory overhead caused by the double link between event and cell data
structures is small and becomes less important with an increasing number of reacting

species 7.

4.2.4. Data structure of the logarithmic classes

The array of events has a substructure appropriate to the contents of the loga-
rithmic classes. For each class a descriptor contains all related information.

class{
pointer to next class L, ,; sequence of classes as a linked list
integer z;; the power of 2 related to the class
derived information for speedup only
double float £_; class reactivity
integer v,; number of events in class
F.,[] as a pointer to e ; the first element of the class

}

Within each class the events are stored in a one dimensional array, which is to
contain no empty places. The classes are realized as structures containing several
elements, as shown above. The sequence for the linear selection is realized by a
linked list, so there is a pointer to the next class. The integer z contains the
power of two managed by the structure. For speedup, some related frequently used
information as 27,2%*! etc. also may be stored in this structure. The number v,
describes the variable size of the array of events F.[], which is implemented as a
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pointer to its first element. At this point, we use the ability of the programming
language C to access entries by indirect or relative addressing. The complete data
structure including the links to the cells is shown by figure 3. If an event is inserted,
it is simply stored at the end of the (sub)array F.[], after that v, « v, + 1 is
increased. If an event i is deleted, gaps in the array of events F,[] must be avoided
to keep the von Neumann rejection efficient. Therefore the last event of the sub-
array has to be moved in the gap, F,[i] «— F,[v.], before decreasing v, «— v, — 1.
Because there is a cell structure pointing to this event, its cell has to be informed
that its related event has moved.

Since there is no a—priori strategy to estimate the strong fluctuations in the size
of the classes, we run into the problems of collisions in memory. If the array of
events F[] of a single class L, is going to overwrite the array of events F, 4[] of its
successor, it is necessary to reorganise the division of the memory occupied by the
array of events. This is done by crunching and re-expanding all classes proportional
to their actual memory consumption.

4.3. Implementation of the reactions studied

According to our approach to separate the event handling from the chemistry
within a cell, most of the work is done once the event handler has been implemented.
The cells are realized as structured variables according to section (). Thus adapting
the algorithm to any specific RDS does not require more than the implementation
for drawing a reaction within a cell to select the specific reaction. In our case we
have to choose

1. a volume (2,
2. the number of cells L? defining a discretisation w = Q/L? and h = w'/9,
3. a hopping rate A\ymm = Da/h?,

4. and a local reaction—constant \;, = wk/w? = k/w.

Another procedure has to be provided to do the related changes and to compute
the reaction-rates. According to (16) and (35) the reaction— and diffusion-rates of
cell 77 are given by

A = MXaa(Xan—1) or (55)
Aﬁ = )\kXAﬁXBﬁ and (56)
Aaﬁ = Xaﬁ)\aﬁm with a = A, B. (57)

5. Simulations in several dimensions

The aim of our simulations is to test the accuracy of the scaling ansatz. We
want to examine both limits of the reaction—diffusion—system. On the one hand,
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empty
class Z, event 1 ~
class z / class z, event 2 -
pointer to class z, event 3
first of class z, event 4
vV, =5 class Z, event 5 ~
events empty 0 \
empty 0
empty 0
empty 0
class z+1 / class z+1, event 1
pointer to class z+1, event 2
first of class z+1, event 3 A
Vip1 =38 class z+1, event 4
events class z+1, event 5
class z+1, event 6 —
class z+1, event 7
class z+1, event 8
class z+2 empty 0
pointer to - empty 0
first of \ empty 0
Voo =3 class z+2, event 1
events class z+2, event 2
class 2z +2, event 3
empty 0
classes events cells

Figure 3: Data structure of classes, events and cells. At first a class is selected,
then an event related to a cell, and finally a reaction in a cell. The class structure
points to the first of its events. Among the event sub—arrays of different classes
empty places are left.
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'y ‘u \ H‘ LiET
“‘wh“;“} ‘1 it

Figure 4: Formation of domains in the diffusion—controlled reaction A + B — § for
a volume of 100 x 100 cells. The symbol ”|” denotes cells containing one or more A

molecules while the symbol ”—" denotes B.

density

time gt
Figure 5: Simulation of A + B — () for diffusion-controlled reactions in the dimen-
sions d = 1,2, 3,4, extension L¢ = 3 - 10%, 4002, 503, 254, An =0
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A+ B — 0, exponents ~y
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04 ,,‘"'""vdiffusion—controlled k>D . |

. reaction-controlled k < D+

03+ . theoretical exponents 1
A

0.2 - ; : .
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dimension d
Figure 6: Simulation of A + B — 0 for diffusion—controlled reactions in the dimen-
sions d = 1,2, 3,4, numerical values in table (1)

there is the reaction—controlled limit, where the dynamics is determined by the
reaction—constant D/Q%/¢ > k, expecting mean-field behaviour n,(t) o< t=', on
the other hand we examine diffusion—controlled limit D/Q%/ ¢ <« k, where the long
time annihilation is delayed by the necessity of transport.

Defining length and time scales we have chosen @ =1 and D =Dy = Dg = 1.
This way the reaction constant k is fixed, too. Since k now has the meaning of
a rate in the case of one molecule per unit volume, D and k get inverse times
[D] = k] = [1/1].

5.1. The system A+ B — 0

Figure (4) shows a snapshot of the formation of domains, figure (5) shows the
time dependent density n,(t) for the diffusion—controlled A + B — 0 reaction.
The logarithmic plot compares the results of our simulations to straight lines t~/4
predicted by theory. The size of the system obviously is sufficiently large, thus one
run in each dimension may be considered as self-averaging. The figures (6) and
(7) show the exponents of the algebraic annihilation for both diffusion— (D < k)
and reaction— (D > k) controlled limits. In our simulations these inequalities are
realized by a ratio of at least 9 orders of magnitude for £ > D = 1. To be sure to
be sufficiently close to the limit k/D — oo the rate k has been increased until the
exponents measured by linear regression have not changed any more.

Obviously, the scaling theory for the A+ B — ) reaction is within the statistical
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A+ A — , exponents 3
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1.0
09 I i
08 f :
0.7+ 1
06 | diffusion-controlled £ > D , |
reaction-controlled k < D .
o theoretical exponents -
05 ¢ 1
04 L L L L
1 2 3 4

dimension d
Figure 7: Exponents of the algebraic decay of A + A — ) for different dimensions
and several reaction—probabilities £ = 10°, numerical values in table (2)

errors of a few percent.

5.2. The system A+ A — 0

For the A + A — ( reaction we observe logarithmic behaviour in its critical
dimension, as predicted by '7. This is not a multiparticle effect and results from
two dimensional Smoluchowsky theory for only two particles The @ has divided
by log(t) to reproduce the correct t=! scaling. The results have been obtained by
k =10° = 10°...10'2, thus we are convinced, that our simulations give an excellent
approximation to the diffusion—controlled limit. The simulations have been done
with some 107 molecules. For every case studied, we have performed a finite size
control by doubling the size L until we have not find any influence of the finite
volume. Furthermore, we could neglect corrections, even if in d = 4 where we have

been limited to a hypercube of linear extension L = 25, what may be a consequence
of d. = 4.

6. Conclusion

Thus within statistical errors of 1...2% and an uncertainty due to the method
of linear regression of the same order of magnitude, the tables (1) and (2) show,
that scaling theory describes the A+ A — () and A + B — 0 correctly, including
the important cases A + A — @ and the logarithmic corrections in d = 2, where we
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d 1 2 3 4
0.2509 | 0.5349 | 0.8264 | 0.978
Ys 0.2569 | 0.5129 | 0.8035 | 0.999;
0.7995
0.782¢
0.249:2 | 0.53211 | 0.7689 | 1.0139
Yoo 024312 054011 07599
0.24645

Table 1: Numerical results of A + B — 0, see figure (6). The values are presented
as s, where the subscript s denotes the order of magnitude of k¥ = 10° with v,
representing the best approach to the diffusion—controlled limit, extension L? =
300001, 4002, 503, 25%, n4(0) = ng(0))

d 1 2 3 4

Bs 0.51604; 0.9821~

0.496612 | 0.96869 | 0.93909 | 1.00289y

B 0.95049 | 0.97369 | 1.00259
0.95759

Table 2: Numerical results of A + A — 0, see figure (7). As in the previous table
the subscript s denotes the order of magnitude of the reaction constant. Note, that
in d = d. = 2 logarithmic corrections have been performed.

found an annihilation according to n4(t) ngt_

Thus, we have shown that for the simplest reaction—diffusion—systems, in which
the influence of the finite number of molecules in a single cell must be taken into
account, the algorithm is able to cover the whole field from diffusion— to reaction—
controlled systems. A detailed study of the crossover of both regimes which de-
termines the crossover time depending on the size of the system and the diffusion
constants will follow. For the simplest reactions, the theoretical results have been
reproduced nearly exactly.

Our approach follows a strategy opposite to the common cellular automaton
philosophy. Instead of simulating a lot of simple diffusion—steps represented by
integer operations, we try to find a length scale below which diffusion may be
neglected. On this scale one single hopping process may replace a large number of
infinitesimal automaton lattice gas steps.

The price to pay is the implementation of a complex event handler to maintain
the exact Markoff-probabilities. From our experience we are pleased that the total
overhead produced by the event handler is less than a factor of 3-4 per Markoff—
event compared to reaction—systems without diffusion. The requirement of diffusion
being much faster than chemical reactions causes an additional overhead by a factor
of 5-10.

The typical speed of a common Ultrix or Alpha 80 Mc RISC workstations leads to
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some 10* — 10° Markoff-operations per second. For some 107 annihilation processes
we need some 10 minutes to a few hours.

We claim our algorithm to be superior to any lattice gas simulation, because we
are not restricted to one molecule per cell. For £k — oo the lattice gas is included
as limit, for £ — 0 the simulation degenerates to the homogeneous case. An upper
limit for the size w of the reaction cells is given by the comparison of reaction and
diffusion—time—scales.

The computing time for more complex RDS will increase linearly with the num-
ber of reactions. In our simple cases the memory overhead also is about a factor of
2, and can be compared to two additional components of the RDS. However, after
we have implemented an event handler which is completely independent of physical
problem and the underlying topology, further simulations of RDS are realized with
little effort. The event handler can be easily integrated into any program, because
the only necessary adaptions are the selection of the reactions in a single cell.

6.1. Future extensions

Due to the generality of the method, we see a lot of possible applications.

6.1.1. Obvious generalisations

Further extensions are possible. If its neighbourhood influences the reactions of
a cell, i.e. if we want to describe surface dynamics or the fluctuations of a field, the
general method keeps unchanged. Only a slight modification of the update of the
neighbour cells must be taken into account.

The simplest assumption, the chemical reactions being independent of 77, may
be completed by reactions depending on the single cell or a cell and its topological
neighbourhood. With regard to these conditions we only have to supplement further
indices if necessary. The transition probabilities, which do not only depend on
the single cell 7, but also on its neighbourhood may be denoted by the symbol
Mz This way we can indicate the possibility that a step depends on the
contents of more than one single cell. For those types of events the symbol M is

in contrast to A, which shall be left to local rates. Therefore M}”ﬁ s+ depends on
the cells 7, 17,7’ ..., whereas A% is restricted to 7. If we provide AL. ., with

additional indices, this symbol serves as a denotation for a transition changing the
contents of several cells 7,7, with a rate depending only on the single cell 7.
This is the manner we have described diffusion in Gillespie’s algorithm by a reaction
changing the contents of two cells, whose rate Ayz» only depends on 7 alone.

To handle a reaction as a Markoff-event by the event handler, it is always
assigned to its first cell specified. Thus A%, and M:. both are assigned to cell

—

n.

Qi = A+ M;

= Y AL+ Aba o+ Y MEADY Mii+ > Mo +---.(58)
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The difference of the dependencies on one or more cells is unimportant for the
principal selection of a reaction step. Again an arbitrary event is unambiguously
denoted by 7 and 77 and its rate Qiﬁ. More precisely, this symbol now unifies the

—

description of AL, AL . M:. . For a transition touching further cells 7,7’ the
bookkeeping had to be done for these cells, too.

For RDS the case of a reaction depending on several cells does not attend,
we have presented this generalised formalism to show, that even more complex
dynamics could be handled. This way it is possible to introduce events depending
on gradients into the framework of chemical reactions. This opens an outlook not
only to the simulation of surface dynamics, but points out to new approach to field
theoretical models on computers.

We want to proceed to simulate more complex behaviour, with a variety of

possible chemical reactions.

6.1.2. Automatically generated code

Therefore, we are writing a code generator, generating C source code by a script
to automatise the process from the problem definition to the program running. As
we have seen, more complex reactions are difficult to implement because for any
practical purpose, any efficient code expands from one line definition to one page C
source code. This will be the subject of a future paper.

We expect even much more interesting stochastic effects for more complex sys-
tems or in more complicated topologies. Simulations become essential, because by
the lack of a simple scaling ansatz we may lose control over the fluctuations in a
complex system, especially if the numbers of molecules in an individual cell are
small.
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Appendix A: Scaling approach for A+ A — ()

In the diffusion—controlled limit, the mean field behaviour cannot correctly describe
the role of fluctuations. The approach of the scaling theory is to derive arguments
connecting fluctuations to a length scale £. The length £ is related to a typical time
scale t¢ by standard diffusion—scaling t¢ = £2/D.

Kang and Redner have argued °, that the initial mean distance £ = ayn of a
A molecule to its next neighbour is proportional to n(0)~/¢. Therefore, the time-
scale 7y v to pass this distance is scaled by the standard diffusion—scaling of space
and time according to

NN & a]lv)N = n(0)77. (A1)

The density is scaled by a function as g(x)
t
n(t) = n(0) - g (—) . (4.2)
TNN

with the asymptotic properties

r<1l g(z) = 1, (A.3)

r>»1  g(z) « z7P. (A.4)

To compute the scaling exponent 3, we need the additional assumption, that the
long time behaviour is independent of the initial concentration, thus we obtain

(Dt)Pn(t) = constant. (A.5)

In d. the scaling and the mean—field exponents meet, thus

d

B=3 de=2 (A.6)

Appendix B: Scaling approach for A+ B — 0

The dynamics of this system are governed by domains, which are defined as local
areas where either the A or the B species dominates. A typical picture obtained by
simulations in d = 2 is shown in Fig. 4.
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Because A and B annihilate as pairs, the difference
An =na(t) —np(t) =na(0) —np(0) = constant (B.1)

is conserved. In a volume (% of linear extension ¢ the initial number of molecules
of each species may vary due to fluctuations at time ¢t =0

No(0) = (No) £ V/(No) = na(o)gd £ 1/na(0)¢%. (B.2)

Some species may locally be in majority even it is global in minority i.e. Ny > Np
even if ng < mp. Thus by fluctuations local inversions are possible. The largest
possible volume £¢, in which an inversion may occur, is estimated by equating the
numbers of A and B molecules

0= Na(0) = N5(0) = | /N + v/Na| . (B.3)

Inserting (B.2) we solve (B.3) obtaining the length scale

—2
d

¢ = |V/na(0) = /n5(0) (B4)
By diffusion—scaling ¢ is related to the time required to cross a domain
_&
te = D’ (B.5)

assuming both diffusion—constants being equal, i.e. D = D4 = Dpg. The scaling

ansatz

na(t) = Cout™ £, (?Z) (B.6)
requires the existence of scaling functions f,(x), whose exponential decay dominates
the algebraic decay ¢t~ for ¢t > t.. For short times the scaling functions are assumed

to be constant, thus

<1l falz) = 1, (B.7)
z>1 f(z) o« exp(—cz). (B.8)

Inserting f, into (B.1) we get

Ca-fa (é) ~Cg - fs (é) = % ‘\/nA(o) _ \/nB(O)‘ Sl (B.9)

The left side of the equation only depends on the ratio t/t¢, therefore this statement
yields for the right side of this equation, too, thus leading to the algebraic exponent

d

i d, = 4. B.10
= (B.10)

Although in the limit n4(0) — n.4(0) the factor ‘\/nA(O) — \/nB(O)‘ — 0 in equa-

tion B.9 disappears, the argumentation is not affected and the scaling keeps valid
9,10



