Lecture 12: The optimal point of instrument application

Purpose

- show under what conditions various instruments are suitable (advantages and disadvantages with the instruments
- present a theoretical frame for choice of instruments (OPIA)

Eirik Romstad

School of Economics and Business Norwegian University of Life Sciences http://www.nmbu.no/hh/

Outline

- Interactions the environment the economy
- Tradeoff TC and overall instrument performance
- Evaluation of various instruments principal dividing line
 - environmental performance based (ambient policies)
 - emission based
 - process based
 - input factor based
- Optimal Point of Instrument Application (OPIA)
 - a principal frame for the choice of instruments
- Linkages to contracts, monitoring and enforcement

Environment and economy linkages

Instrument performance

- Physical instr.perf. : how well does it solve the environmental problem it is aimed at solving
- Econmic instr.perf. : necessary RAM criteria
 - participation constraint
 - informational viability
 - incentive compatibility
- Regulations directed to the problem preferred:
 - ► technological progress ⇒ regulation aimed at mandating process control likely to become obsolete
 - incentives for solving the problem
 - ► match between objective of regulation and instrument used ⇒ easier to understand for all parties

4:18

Transaction costs and performance

- TC are real and hence to be included in the social costs associated with an instrument
 - TC ⇒ reduction in we fare estimates while env. performance unchanged
- social costs ↑ ⇒
 welfare ↓
- must trade off net economic welfare with environmental performance

5:18

TC and 4 regulation categories (1)

- Ambient regulations:
 - directed towards the state of the environment
 - example: the concentration of a chemical is not to exceed x parts pr. mill in a lake, i.e., the lake's self cleaning capacity is taken into account when formulating the regulation
- Emission regulations:
 - directed towards the rate of emissions or total emissions in a given time period
- Remark: the difference between ambient and emission regulations is somewhat subtle, spec. if focus is on optimal emission level

Emission and ambient policies (1)

- Ambient regulations attractive from an environmental perspective as the focus is directly on environmental quality
- Issues with ambient regulations
 - ► polluters are held responsible/liable for factors that they may be unable to control ⇒ fairness issue?
 - example: the environmental impact of emissions in lakes and rivers may depend on the for the firm uncontrollable factors temperature, water flow, etc.
 - lack of control on ambient results \Rightarrow risk to firms
 - + firms forced to make risk calculations
 - what if firms' risk preferences deviate from those of society ?

8:18

9:18

Process and input based policies (1)

- High TC on emissions regulation ⇒ emission externalities may be Pareto irrelevant
 - Welfare gains by regulations with less TC?
- Process based policies
 - provide incentives (subsidies?) for firms to adopt the "best available technology" (BAT)
 - BAT firms have lower emissons than old tech. firms -it suffices to check that BAT is operated properly (self reporting with random checks)
 - BAT works well if emissions are heterogenous or multi-compound
 - ► facilitates "zero emissions" ⇒ beneficial for toxic releases or in particularly sensitive areas

... process and input based policies (2)

- Input based policies (ex. fertilizer tax)
 - particularly beneficial if
 - there is a strong linkage between emissions and input factor use
 - emissions are homogenous
- Difficulties with process/input regs vis-a-vis emission based instruments
 - removes the direct incentives of reducing emissions that follows directly by emission based regs.
 - process based: may create technological lock-in
 - input based: black market/smuggling of the regulated (high value/low volume/weight) input

11:18

Heterogenous emissions

Emissions with

- Process based regulations
 - may be difficult to use if one reducing emissons of one emission compound makes it very costly to reduce other compounds
 - ... but many modern processes are "zero emission"
 - payments for adopting BAT can be regionally differentiated

OPIA (1)

• Optimal point of instrument application (OPIA): a concept for what type of regulations to use under various settings

... OPIA (2)

- TC may change over time with technological progress ⇒ boundaries between types of regs do not stay fixed
 - ex. GIS in terms of management of issues that are linked to geographical location
- Severity of problem may mandate some types of regulations over others
 - Weitzman "Prices vs. Quantities" makes this distinction for emission based regulations
 - price instruments generally weaker than quantity or process based instruments

Contracts, monitoring & enforcement (1)

- TCs can be reduced
 - good design for monitoring & enforcement important
 - example: testing of well drinking water (Henken and Ready, AJAE 1999)
- General principle:
 - test where the marginal value of information equals the marginal cost of monitoring
 - in border line cases
 - ➡ in "high value locations"
 - for very toxic substances

15:18

... contracts, monitoring & enforcem. (2)

- Contracts (lecture 9)
 - contract terms and transaction costs
 - compare contract prices with varying degrees of "burden of proof"
- Monitoring and enforcement (lecture 8)
 - self reporting when monitoring individual pollters is costly
 - consistency individual self reports and aggregate measurements
 - false self reports more severely punished (fraud: action to conceal/hide violations)

Summary

- Much of the TCs related to monitoring and enforcement of regulations
 - expected marginal value of M&E = expected marginal costs of M&E
- TCs differ among types of regulations
 TC of various regulations may affect what is optimal to do
 - OPIA as a framing tool
- TCs may change over time
 - technological progress may reduce TCs of regulations substantially

17:18

Concept questions

- Applying OPIA
 - sea based aquaculture
 - land based aquaculture
 - moving sources (cars)
- Contracts and OPIA :: contract price vs. "burden of proof" - what to expect
 - general principles (policy guide)
 - examples
 - location fixed emission sites
 - moveable emission sources
 - location of emissions do not matter