Dynamic Efficiency for Stock Pollutants

Eirik Romstad School of Economics and Business Norwegian University of Life Sciences

Motivation and key results (1)

- Usual view in the sparse "text book" like literature: static efficiency through time
- Stock pollutants complicate matters
 - :: what not abated today carries over to future time periods
 - ... "carry overs" to our understanding of efficiency in a general context?
 - ... very visible for cost effectiveness (least cost way of reducing emissions): only cost considerations – trade-offs over time (trivial)
 - ... more intriguing for efficiency/optimality
 - warning :: work in progress

- Dynamic cost effectiveness = least cost:
 - Cost effectiveness across agents (equal MACs)
 - Time indifference: $p_t = (1+r)^t p_0$
 - Time rules ... (when the static part OK)
- Dynamic efficiency/optimality
 - Coincidence if static optima were placed on the price path $p_t = (1+r)^t p_0$ through time
 - \Rightarrow trade-off static DW-losses vs. price path
 - ... depends on relative slopes of marginal benefits and costs?

Outline

- Stock effects
- Time indifference
- Dynamic cost effectiveness
- Dynamic optimality
- Implications

Stock effects

Net emissions carry over to future periods

Costs

- :: *MEC*_{*t*+1}(accumulated past net emissions)
- shifts back and rotates the MEC
- dynamic analysis

 $MEC_{t+1}(Z_{t+1})$ $MEC_t(Z_t)$

Time indifference

- Hotelling price path $p_t = (1+r)^t p_0$

for agents to be indifferent between selling/ buying a good in time period *t* or 0.

Dynamic cost effectiveness (1)

- Statics: equal marginal abatement costs for each agent, evaluated at that agents emission level :: MAC_i(z_i*) = MAC_j(z_j*)
 - absence of arbitrage between agents
- Dynamic cost effectiveness = absence of arbitrage over time

$$MAC_{t+1}(z_{t+1}^{*}) = (1+r) MAC_{t}(z_{t}^{*})$$

7:20

Dynamic optimality (1)

Static optimality:

$$MAC_i(z_i^*) = MAC_j(z_j^*) = MEC(\Sigma z_k)$$

Dynamic optimality:

$$MAC_{t}(z_{t}^{*}) = MEC_{t}(z_{t}^{*}) = p_{t}^{*}$$
$$MAC_{t+1}(z_{t+1}^{*}) = MEC_{t+1}(z_{t+1}^{*}) = p_{t+1}^{*}$$

What is the relationship through time?

м М N

11:20

... dynamic optimality (3)

 Strange coincidence if the sequence of static optimal emission levels over time would follow the Hotelling price path

$$p_{t+1}^* = (1+r)^t p_0^*$$

 How to trade off time preference (given by the Hotelling price path) and the sequence of static optima?

... dynamic optimality (5)

 Decision problem: maximize discounted social welfare (net benefits) from emissions reductions (q_t) over time

Complicating features

- future benefits and costs of emissions reductions not known
- exp. benefits: t-1 E [Bt(qt*)] < t-1 E [Bt+1(qt+1*)]
 (stock effect)
- exp. costs: $_{t-1}E[C_t(q_t^*)] > _{t-1}E[C_{t+1}(q_{t+1}^*)]$ (technological progress)

... dynamic optimality (6)

- Max $\Sigma_{t=1}$ (1+*r*)^{-*t*} { $_{t-1}$ E [$B_t(q_t^*)$] $_{t-1}$ E[$C_t(q_t^*)$]} { q_t^* }
- Nature of the solution depends on
 - expectations of future benefits and costs
 - relative slope of expected benefits and costs :: Pfizer ('99): expected benefits flatter than expected costs for climate
 ⇒ most likely trade-off: postpone reductions
 ⇒ q_t* < q_{t+1}* as (1+r) p_t* > p_{t+1}* but could also be q_t* > q_{t+1}* when (1+r) p_t* < p_{t+1}*

См N N

www.nmbu.no

Loss when using statics – an outline

• Sequence of static optimal prices { p_t^s } differ from the optimal dynamic prices { p_t^d } \Rightarrow deviation from

Hotelling price path: $p_t = p_0 (1 + r)^t$

⇒ loss of dynamic efficiency
 (= trade-off between time periods)

17:20

Optimal solution – an outline (1)

- Minimize the discounted losses caused by the two perspectives
 - dynamic (DW-losses from the statically optimal prices) and
 - statics (deviation from the Hotelling price path compared to the dynamically optimal prices)

CU

Concluding remarks

- Sequence of static optima and dynamic optimality do not generally coincide
 - q_t* < q_{t+1}* :: an intuitive (climate) result due to tech.progress changing more than stock effect on marginal damages
 - increased early abatement reduces stock effect ⇒ "old" result less likely
 - emissions and stocks "same" damage ⇒
 MC_t(q*) = MC_t(reduced stocks*) :: REDD
- Work in progress