Lecture 6: Optimal taxes & subsidies - efficiency and distributition

- Purpose
 - Understand weighting in welfare assessments
 - Show how to implement optimal taxes in a welfare economic framework
 - Understand differences first and second best implementation

Eirik Romstad

School of Economics and Business Norwegian University of Life Sciences http://www.nmbu.no/hh/

Outline

- General welfare economic theory framework
 - welfare weighting (implications of welfare priorities)
 - what does the regulator know, and what does he not know = truthtelling in policy
 - steps in the maximization proces (from the full info "act as God" (First Best) to settings with less info. (Second Best))
- A simple model of providing public goods
 - demonstrates First Second Best demarcation
 - First: regulator knows what is needed to implement
 - Second: what is achievable with current info.

5:16

... general framework (4)

Bergson-Samuelson social welfare function:

Principal: max SWF(a_i) = max $\Sigma_i \beta_i v_i (\mathbf{p}, M_i, z)$ {**t**,**q**,**a**}

- More on welfare weighting
 - equal weighting: β_i is one (or 1/*N*)
 - politically motivated weighting: groups that are prioritized are given a larger relative weight
 - ➡ poor people / race / indogenous people / gender
 - \rightarrow extreme weighting: others than the target group(s) receive weight $\beta_i = 0$

6:16

Asymmetric information (1)

- Regulators only know agent preferences with uncertainty = estimates of preferences :: V(.)
- Agents maximize their actual utility (here represented by indirect utility function) :

agent i max $V_i(\mathbf{p}, M_i; z_i)$

 $\{\mathbf{x}_i, \mathbf{z}_i, \mathbf{a}_i\}$

s.t.(1): set of policy constraints (or new price vector, \mathbf{p} , if policy is a price constraint [incentive comp. constr]) - may be in firm's profit function which may be reflected in agents' welfare through changes in money income, M_i

s.t.(2): $V_i(\mathbf{p}, M_i; z_i) \ge V_{io}$ [part.constraint group i]

7:16

... asymmetric information (2)

- Comments on the difference the principal's (regulator's) and the agents' view:
 - regulator's expectations: $\hat{V}_i(\mathbf{p}, M_i, z)$
 - agents' actual utility fnc.: V_i (**p**,M_i,z) (which is the individual agent's private info.)

Remark: goes to the core of RAMs: what instruments to choose under various assumptions on the regulator's ability and costs of observing agent type and behavior

... asymmetric information (3)

- Steps in the way to solve the generic social welfare maximization problem
 - 1. Assume full information ("act as God") and solve the maximizatio problem using the relevant choice variables (that may not be observable)
 - Gives the First-Best solution that we later try to replicate / use as a bench-mark
 - 2. Solve the generic maximization problem using the policy variables (taxes, subsidies, quantity restr.) the regulator can use under various information scenarios
 - May replicate the First-Best (lucky) OR
 - Give another solution that is close (Second-Best)

9:16

Implementation issues (1)

- Under asymmetric info, implementation of
 - first best (FB) OR
 - second best (SB)

hinges on the regulator's possibilities/capabilities of inducing truthful revelation

- Two cases:
 - Full truthful revelation ⇒ FB is implemented
 - partial truthful revelation
 - \Rightarrow FB not implemented
 - \Rightarrow some SB is implemented, but with lower SW

11:16

Example - max.project benefits (1)

- Advice: work in emissions reductions space (then supply and demand "comes out right")
- Let

$$MC(q) = q \Rightarrow TC(q) = q^2/2 = C(q(t))$$

$$D(q) = 12 - q$$

$$\Rightarrow B(q) = 12 q - q^{2}/2$$

12:16

.. example - max.project benefits (2)

- First best (full info. secenario)
 - emissions fully observable by the regulator
- Finding optimal tax ⇒ solve: D(q) = MC(q)
 12 q = q ⇒ 2 q = 12 ⇒ q* = 6
 tax that implements q* = 6 :: t* (= q*) = 6
- Total benefits $(q^* = 6)$ = $B(q^*) - C(q^*) = B(6) - C(6)$ = $12 q - 1/2 q^2 - 1/2 q^2$ = $12 \times 6 - 1/2 \times 6^2 - 1/2 \times 6^2 = 36$

13:16

... example - max.project benefits (3)

- In 2nd best (limited information), assume regulator observes 50% of emissions (reductions)
 ⇒ can only tax 50% ⇒ MC(q) = q/2
- Finding optimal tax ⇒ solve: D(q) = MC'(q)
 12 q = q/2 ⇒ 3/2 q = 12 ⇒ q* = 8
 tax that implements q' = 8 :: t' (= q') = 8
- Total benefits (q' = 8/2)= $B(q^*) - C(q^*) = B(4) - C(4)$ = 12 q - 1/2 q² - 1/2 q² = 12 x 4 - 1/2 x 4² - 1/2 x 4² = 32

14:16

Summary

- Maximizing social welfare
 - the social welfare function (differences between regulator's perception of agents' utility fncs, and agents' actual utility fncs)
 - the distributional weights (β s)
 - availability of policy instruments
 - all affect the optimal and attainable outcomes
- Steps in the solution process (slide 9)
 - find the First-Best "acting as God"
 - try to replicate the First Best with policy variables the regulator has at his disposal (First Best not attainable ⇒ Second Best)