Lecture 11 (add): Elasticity of substitution for the Cobb-Douglas production function
Recall the definition the elasticity of substitution: $\quad \sigma=\frac{\frac{d(R / K)}{R / K}}{\frac{d\left(Q_{K} / Q_{R}\right)}{Q_{K} / Q_{R}}}=\frac{d(R / K)}{R / K} \frac{Q_{K} / Q_{R}}{d\left(Q_{K} / Q_{R}\right)}$ where $d(\ldots)$ is the total differential of the term in the bracket

The CD production function: $Q=A K^{\alpha} R^{\beta}, A>0, \alpha>0, \beta>0$
(Remark: $\alpha+\beta=1$ is constant returns to scale, $\alpha+\beta<1$ is decreasing returns to scale) with first order derivatives: $\quad Q_{K}=\frac{\partial Q}{\partial K}=\alpha A K^{\alpha-1} R^{\beta} \quad$ and $\quad Q_{R}=\frac{\partial Q}{\partial R}=\beta A K^{\alpha} R^{\beta-1}$ which gives the marginal rate of technical substitution $M R T S_{K R}=Q_{K} / Q_{R}=\frac{\alpha A K^{\alpha-1} R^{\beta}}{\beta A K^{\alpha} R^{\beta-1}}=\frac{\alpha}{\beta} \frac{R}{K}$

The total derivative (= differentiation with all choice variables in a function) of R / K :

$$
\begin{equation*}
d(R / K)=\left(\frac{-R}{K^{2}} d K+\frac{K}{K^{2}} d R\right)=(-R d K+K d R) \frac{1}{K^{2}} \tag{2}
\end{equation*}
$$

Above derivative obtained from the quotient rule https://en.wikipedia.org/wiki/Quotient rule
Along the isoquant the change in $R(d R)$ in terms of the change in $K(d K)$ must equal:

$$
d R=-Q_{K} / Q_{R} d K=\frac{\alpha}{\beta} \frac{R}{K} d K \quad(\text { where we use (1)) }
$$

Insert above line into (2) to get:

$$
d(R / K)=(-R d K+K d R) \frac{1}{K^{2}}=\left(-R d K+K \frac{\alpha}{\beta} \frac{R}{K} d K\right) \frac{1}{K^{2}} \text { (2) and (3) }
$$

Next, we need to evaluate $d\left(Q_{K} / Q_{R}\right)$
As $Q_{K} / Q_{R}=\frac{\alpha}{\beta} \frac{R}{K}$ we can use (2) and write

$$
d\left(Q_{K} / Q_{R}\right)=\frac{\alpha}{\beta} d(R / K)=\frac{\alpha}{\beta}\left(-R d K+K \frac{\alpha}{\beta} \frac{R}{K} d K\right) \frac{1}{K^{2}}
$$

We now has all the "building blocks" needed to find the value of

$$
\sigma=\frac{d(R / K)}{R / K} \frac{Q_{K} / Q_{R}}{d\left(Q_{K} / Q_{R}\right)}=\frac{d(R / K)}{R / K} \frac{Q_{K} / Q_{R}}{\frac{\alpha}{\beta} d(R / K)}=\frac{1}{\frac{R}{K}} \frac{\frac{\alpha}{\beta} \frac{R}{K}}{\frac{\alpha}{\beta}}=1
$$

: along any isoquant for the Cobb-Douglas production function, the elasicity of substitution is one
Remark: there are numerous other ways of calculating the elasticity of substitutio. One of the "good" ways (with a mathematical trick) is on Wikipedia:
https://en.wikipedia.org/wiki/Elasticity_of_substitution
A brief graphical presentation of the elasticity of substitution (next page)

A brief graphical presentation of the elasticity of substitution

The figure below has replaced natural capital R with labor L, but it still captures the essentials

Remark: The notation in the graph relates to two different cost minimum allocations, e and $e^{\text {' }}$, which the follows the different marginal rates of substitution used ($-f_{K} / f_{L}$ and $-f_{K}{ }^{\prime} / f_{L}{ }^{\prime}$), and the corresponding input factor ratios L / K and L^{\prime} / K^{\prime}.

