10: Game theory \& cooperation The Folk theorem \& side payments

- Objectives
- show how non-cooperative single shot games can yield cooperative outcomes when they are made dynamic = demonstrate the Folk theorem
- side-payments as a vehicle for cooperation

Eirik Romstad

School of Economics and Business
Norwegian University of Life Sciences
http://www.nmbu.no/hh/

Nash equilibrium - repetition (1)

- Definition Nash equilibrium: The outcome that results when a player plays his/her best reply strategy given that all the other players play their best reply strategy
- Problem: Nash equilibria are rarely Pareto-optimal (in that sense a pessimistic outcome)

	Prisoner 1	
Prisoner 2:	Don't accuse	Accuse
Don't accuse	$(-2,-2)$	$(-1,-10)$
Accuse	$(-10,-1)$	$(-7,-7)$

Region of potential Pareto improvement from non-coop solution (-7,-7)

Payoff pri. 1

The Folk theorem (1)

- Demonstrates how cooperative outcomes (that differ from the single shot Nash equilibrum) may occur in noncooperative settings
- Requirement: infinitely repated games
- ... or a game with random stop time [has same effect as infinite stop time as backwards recursion then is not applicable]
- Definition of the Folk theorem

Any individually rational pay-off vector can be supported as a Nash equilibrium in repeated games that last forever and the discount rate is sufficiently low.

... the Folk theorem (2)

Dynamic concept - main intuition
$N P V_{\text {nice }} \geq N P V_{\text {bad }}$ for all agents in the game

> nice $\sum_{t=o}^{\infty} \beta_{i}^{t} \pi_{i, t}^{c} \geq\left(\sum_{t=o}^{T t} \beta_{i}^{t} \pi_{i, t}^{c}\right)+\beta_{i}^{T} \varphi_{i, T}+\left(\sum_{t=T+1}^{\infty} \beta_{i}^{t} \pi_{i, t}^{n}\right)$ [1]
β_{i} the discount factor, $\frac{1}{1+r_{i}}$, for agent i
$\pi_{i, t}^{C}$ the payoff to agent i of playing cooperatively in period t
φ i,t the best reply strategy to agent i given that the other players play cooperatively in period t
$\pi_{i, t}^{n}$ the payoff to agent i when all agents pay non-coop

... the Folk theorem (3)

Solving [1] is complicated (non-linear). [1] can be divided into a series of 2-period games, and each
2-period game needs to satisfy the

$$
N P V_{\text {nice }}>N P V_{\text {bad }} \text { criterion }
$$

Reducing [1] to a 2-period sub-game:

$$
\begin{align*}
\Sigma_{t=o}^{1} \beta_{i}^{t} \pi_{i, t}^{c} & \left(=\beta^{0} \pi_{i, 0}^{c}+\beta^{1} \pi_{i, 1}^{c}\right) \tag{2}\\
& \geq \beta_{i}^{0} \varphi_{i, 0}+\beta_{i}^{1} \pi_{i, 1}^{n}=\varphi_{i, 0}+\beta_{i} \pi_{i, 1}^{n}
\end{align*}
$$

the Folk theorem (4)

The solution to [2] in a setting where $t=0$ and $t+1=1$:

$$
\begin{equation*}
1>\beta_{i} \geq \frac{\varphi_{i, 0}-\pi_{i, 0}^{\succ}}{\pi_{i, 1}^{c}-\pi_{i, 1}^{n}} \quad \forall i \in I \tag{3}
\end{equation*}
$$

The general format, where t can take on any value within the unknown timeframe of the game, T

$$
\begin{equation*}
1>\beta_{i} \geq \frac{\varphi_{i, t}-\pi_{i, t}^{C}}{\pi_{i, t+1}^{C}-\pi_{i, t+1}^{n}} \quad \forall i \in I, \forall t \in T \tag{3'}
\end{equation*}
$$

If [3] (or [3']) holds for all agents, it is in all the agents' best self interest to play "nice"
i.e., a cooperative outcome in a non-cooperative setting is achieved

... the Folk theorem (5)

Graphical representation (from agent i's perspective)

The safety level in a game

- Best payoff that a player is se- cured without relying on co- operation from other players
= safety level
- Here (for both players): $\pi_{n \mid n}$
- Rule: no agent accepts a pay- off below his security level

The negotiation space (1)

- Folk theorem welfare ranking: $\varphi>\pi_{c \mid c}>\pi_{n \mid n}>\pi_{c \mid n}$: source to many of the difficulties in reaching welfare enhancing cooperative outcomes
- No general rule for obtaining cooperative outcomes in "nonrepeated" games
- ... but side-payments/-penalties move the game to situations where solution is "trivial"
- Some key difficulties using payments/ penalties
- they reduce the payoff to the players who start using them (offers a side-payment)
- often "a last mover advantage" (= benefits to wait for other players to offer side-payment)

.. the negotiation space (2)

- A : compensation needed for player i not to play φ if j plays coop.
- B : max payment j can offer i to sign agreement for j to be equally well off
- D : ex-payment payoffs

Problem: who moves first (= offers a side-payment)? Here: j moves first ==> reduces gain from cooperation by size of side-payment A to induce i to cooperate

.. the negotiation space (3)

Noncooperative games with "trivial" solutions
= breaking the Nash payoff ranking curse
$\varphi>\pi_{c \mid c}>\pi_{n \mid n}>\pi_{c \mid n}$

Assurance game - solution given

Mixed game - side payment + given sequence of moves

Concluding remarks

- Cooperative outcomes can be achieved in repeated non-cooperative games through the Folk theorem
- applicable to a special class of repeated games
- random stop time
- payoff difference between the best reply strategy
(Nash setting) and cooperation is not too large
- the discount rate is not too large
- adaptable ==> adjust game formulation
- Side-payments
- no specific rules - main issue: who moves first?
- first-mover disadvantage: reduces own payoff to compensate other players

