ECN 275/375 Environmental and natural resource economics Exercise set 2

Exercise 2.1 - utility maximization

The consumer has a Cobb-Douglas utility function: $U\left(x_{1}, x_{2}\right)=x_{1}^{a} x_{2}^{b}$ where x_{1} and x_{2} are consumer goods. Let the consumer's money income be Y, and that consumer prices are p_{1} for x_{1}, and p_{2} for x_{2}. Assume this consumer spends all of his income Y on the two goods, x_{1} and x_{2}. Moreover, assume that $a>0, b>0$, and that $a+b \leq 1$.
(a) What is the marginal utility of consumption for the two goods, x_{1} and x_{2} ?
(b) Show that the marginal utility of either good is positive.
(c) Show that this consumer's optimal consumption of the two goods, x_{1} and x_{2}., equals

$$
x_{1}^{*}=\frac{a}{a+b} \frac{Y}{p_{1}} \quad \text { and } \quad x_{2}^{*}=\frac{b}{a+b} \frac{Y}{p_{2}} \text { respectively. }
$$

(d) Explain what your solution in (c) really is.
(e) Show that consumption levels increase with increasing income, Y, and decline with increasing own prices.

Exercise 2.2 - production with mulitple inputs

A Cobb-Douglas production function with two input factors, labor (L) and capital (K) has the form $Q=A L^{\alpha} K^{\beta}$, where $A>0, \alpha>0, \beta>0$, and $\alpha+\beta \leq 1$, signaling diminishing factor productivity. p is the product price for Q, w is the hourly wage, and r is the cost of capital. For a Cobb-Douglas function to be strictly positive, all inputs must be greater than zero, i.e., $L>0$ and $K>0$.
(a) Write down the profit function.
(b) Derive the first order conditions (FOC equations) for profit maximization.
(c) Show that the optimal ratio of the input factors equals $\frac{L}{K}=\frac{r}{w} \frac{\alpha}{\beta}$. Explain why this implies a linear expansion path?
(d) Write down the cost minimization problem for producing $\bar{Q}>0$
(e) Solve for the cost minimizing combination of L and K. How does that relate to the answer in (c), and what is the explanation for this result?
(f) Suppose we choose to model the emissions of a pollutant, M, as an input. How would you expand your profit maximizing model formulation of the above labor-capital input model? Explain your model formulation.

Exercise 2.3 on the next page

Exercise 2.3-discounting 1

The formula for net present value is written as $\operatorname{NPV}(\delta)=\sum_{t=0}^{T} \frac{1}{\beta^{t}}\left(B_{t}-C_{t}\right)$ where $\beta=1+\delta>1$.
Let the duration of the project be infinite, i.e., $T=\infty$
Consider a project where investments $=10$ take place in year $0(t=0)$ and yearly net benefits are constant in fixed monetary terms and equal to 1 (one) from year one and onwards.
(a) Calculate the net present value of this project for a 2% discount rate.
(b) Calculate the net present value of this project for a 5% discount rate.
(c) Which of the net present values is highest, and why (give an economic explanation)

Exercise 2.4 - discounting 2

In a small municipality the local politicians consider a project to make the municpality look nicer. Projected yearly benefits and costs (in 1000 NOK) for the duration (lifetime) of the project is given by the following table:

	Time (year)							
	0	1	2	3	4	5		
Benefits	0	111	112	113	114	115		
Costs	400	11	12	13	14	15		

(a) What are the benefits of the "look nice" project with a discount rate of 9% ? Should the project be implemented at this discount rate?
(b) What are the benefits of the same project with a discount rate of 6% Should the project be implemented at this discount rate?
(c) Discount rates of 6 or 9% appear quite high, in particular given the Norwegian Ministry of Finance guidelines of discount rates between 2% and 4% depending upon the type of project. Comment on the municipality's choice of discount rate(s).

